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Introduction

Zero-trust management is the name of an emerging community of practice aimed at solving the problem that
consensus, as a management method, no longer scales, often leading to disastrous engineering consequences.
That is, modern engineered systems are exceeding not only the capacity of the human mind to compre-
hend them, but also the organizational capacity of enterprises to make correct and trustworthy (rigorously
and rationally optimized) decisions about them using consensus-based methods, where by “consensus as a
management method” we mean the practice of putting engineers from different disciplines into the same
conference room to come to some kind agreement about a decision to be made.

Such consensus-based approaches cannot scale simply because there aren’t conference rooms large enough
to hold all of the engineers required to make decisions about today’s increasingly complex projects. So in
this paper we propose a new methodology for scalable management and decision making, that is called zero
trust because it does not rely on engineers to come to agreement: modern advances in mathematics, AI,
computing power, etc make it possible to formally represent viewpoints symbolically and probabilistically
on computers and compose them to form nuanced computational truths that are guaranteed to respect the
input viewpoints while being free of contradictions. We furthermore describe a curriculum for training in
this methodology, where we report on each curriculum component using a case study undertaken by industry
experts using various formal methods tools. (In this abstract, we only describe one components, with more
described in the upcoming full version of this paper).

Formal Methods for Engineers - An Underdone Science

We claim that formal methods for engineers is an underdone science, with the systematic non-production
and non-dissemination of such applied knowledge being especially bad in the United States (compared to
Europe). Indeed, there is no computational reason why engineering artifacts should be more difficult to
apply formal methods to than the software artifacts to which they are now commonly applied; in fact, the
field of applied category theory (https://en.wikipedia.org/wiki/Applied_category_theory) has arisen
in part to apply formal methods, those from an emerging branch of mathematics called category theory,
to engineering (applied) domains specifically, and we view this paper as both contributing to those goals
and spreading the word that the time is ripe to tackle such challenges. Reasons of space preclude us from
speculating on the causes of this science being underdone, but we do have a solution: namely, to train
engineers on formal methods. (As opposed to, say, hoping to develop some universal tool or universal
methodology, although tools will be required.) We elaborate on this curriculum in the next section.

1 Curriculum: Engineering with Rigor

The goal of the curriculum below (envisioned as a 10 week long course, with one week per item, and a week
long intro/outro) is to teach engineers to specify systems in a way that humans and computers can reason
about, and to describe the advantages that such reasoning provide, such as automation and assurance. We
assume a mathematical background of an engineer in a non IT field, such as oil engineering.

• Lightweight formal methods. In this component, the goal is to learn how to rigorously represent
engineering artifacts (e.g. data, processes) on a computer so that algorithms can reason about them.
The component covers three common lightweight formal methods for doing so.
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– Functional methods (including functional programming for Excel)

– Equational methods (including Knuth-Bendix completion)

– Logical methods (including SQL and Datalog programming)

• Compositionality. In this component, the goal is to learn how to correctly define and compose (combine)
engineering artifacts using a computer so that the combined artifact respects the meaning of the original
ones. The component covers three common ways of doing so.

– Categorical Algebra (including databases)

– String diagram notation (including non-cartesian operads)

– Polynomial datatypes (lists, trees, infinite streams, etc)

• Computational abstractions for engineering. In this component, the goal is to learn about the formal-
izations of particular abstractions common in engineering, and how they can be composed using the
above techniques.

– Abstract datatypes (Graphs, Queues, Stacks, etc)

– Finite State Machines and Stack Machines

– Concurrent processes (including process calculi and the control theory of feedback loops)

2 Case Study - Spreadsheet Integration

In this section we can only briefly sketch a case study that is written up in full at https://arxiv.org/

abs/2209.14457; the task described in this case study could be tackled by a graduate of our curriculum.
The write-up describes a method for merging multiple spreadsheets into one sheet, and/or exchanging data
among the sheets, by expressing each sheet’s formulae as an algebraic (equational) theory and each sheet’s
values as a model of its theory, expressing the overlap between the sheets as theory and model morphisms,
and then performing “colimit”, “lifting”, and “Kan-extension” constructions from category theory to com-
pute a canonically “universal” integrated theory and model, which can then be expressed as a spreadsheet.
It describes a detailed example of this methodology on a real-world oil and gas calculation at a major en-
ergy company, describing the theories and models that arise when integrating two different casing pressure
test (MASP) calculation spreadsheets constructed by two non-interacting engineers. It also describes the
automated theorem proving burden associated with both verifying the semantics preservation of the overlap
mappings as well as verifying the “conservativity”/“consistency” of the resulting integrated sheet.

3 Conclusion

As industry moves to model-based software for performing day-to-day engineering tasks, it becomes more and
more important to ensure the semantic consistency of models composed of related models (integrated models).
For example, we don’t want errors to propagate from one model to another or to try to integrate models
with conflicting requirements (e.g. positive and negative voltage at the same time). Commonly, to ensure
semantic consistency of integrated models the human subject matter experts that created the input models
communicate informally with each other about their respective understandings of the integrated model and
check for consistency of the integrated model with respect to their original models (think NASA mission
control with its various ‘functions’). Although using groups of human experts to certify/construct integrated
models works for small numbers of input models, this methodology is both costly and not scalable, because
in principle, all the humans may need to communicate with each other (not everything can pass through
mission control), and moreover, people may disagree about the meaning of the input and/or integrated
models. Therefore, to construct/certify engineering models in a scalable way, we must eliminate the need to
relate each input model to each other, and we must make sure that when models are merged, the original
authors of the models need not be involved. It was in looking for ways to solve this problem we realized that
“consensus-free” / “zero trust” management was an underdone science, leading us to propose the curriculum
above - its graduates are qualified to undertake tasks similar to those described in the case study, and many
more described in the upcoming full version of this paper.
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