example Petri
options
diverge_warn = false
schema Net = literal : empty {
entities
Input Place Trans Output
foreign_keys
place : Input -> Place
trans : Input -> Trans
place : Output -> Place
trans : Output -> Trans
}
#p1 ->t1-> p2 ->t2-> p3
instance N = literal : Net {
generators
p1 p2 p3 : Place
t1 t2 : Trans
i1 i2 : Input
o1 o2 : Output
equations
i1.place = p1
i1.trans = t1
o1.trans = t1
o1.place = p2
i2.place = p2
i2.trans = t2
o2.trans = t2
o2.place = p3
options
interpret_as_algebra = true
}
# entities
# i1 i2 o1 o2 p1 p2 p3 t1 t2
#foreign_keys
# trans : o2 -> t2
# place : o2 -> p3
# place : o1 -> p2
# trans : o1 -> t1
# trans : i2 -> t2
# place : i2 -> p2
# place : i1 -> p1
# trans : i1 -> t1
schema intN = pivot N
mapping proj = pivot N # intN -> Net
constraints injectivity = literal : Net {
forall x y : Input
where x.place = y.place -> where x = y
forall x y : Output
where x.trans = y.trans -> where x = y
}
###############################/
#example:
#this is an instance on intN and passes the injectivity check
instance I = literal : intN {
generators
token1time1 : p1
token1time2 : p2
token1time3 : p3
fire12 : t1
fire23 : t2
equations
options
interpret_as_algebra = true
}
instance J = sigma proj I # have J = N
command validate1 = check injectivity J
Keywords:
constraints_literal
sigma
pivot
check
pivot
instance_literal
schema_literal
Options:
interpret_as_algebra
instance N
instance I
instance J
command validate1
Satisfies