The Functorial Data Model

Ryan Wisnesky
Department of Mathematics
Massachusetts Institute of Technology
wisnesky@math.mit.edu

PlanBig December 2014

Introduction

» Goal: describe new work on the mathematical foundations of
information management: the functorial data model.

» It is conceptually similar to the Entity-Relationship (ER) model, but is
formalized using the modern language of category theory.

> Its clean mathematical foundations enable many useful applications.

» Project webpage: categoricaldata.net/fgl.html.

» Sponsored by:

» ONR grant N000141310260
» AFOSR grant FA9550-14-1-0031

)

23

Categorical Data Models

» A category is a reflexive, directed, labelled, multi-graph and a set of
path equations:

f
N——=M Nffg=Nfh
\r_‘lj

» Category theory was instrumental in the development of two
extensions to the relational model, both of which inform work on
language-integrated query (LINQ):

» The nested relational model generalizes sets to nested collections
and is inspired by monads.

» Algebraic datatypes implement nested collections using recursion and
are inspired by algebras.

» The functorial data model generalizes relational schemas to
categories and is inspired by adjunctions.

» Discovered by Rosebrugh et al in the early 2000s, Spivak, myself, and
others have lately proposed it for information integration.

The Relational Model

» Schemas are first-order theories, and instances are models:

» Emp, Dept (1); manager, secretary, first, last, name, works (2)

v

All relations functional, e.g., name(d,n) A name(d,n’) — n =n/

v

All relations total, e.g., Dept(d) — Je.Emp(e) A secretary(d, e)
» Secretaries work in their depts: secretary(d, e) — works(e, d)

» Managers work with emps: mgr(e, m)Aworks(e, d) — works(m, d)

Emp
ID | mgr | works | first | last
101 | 103 ql0 Al Akin
102 | 102 x02 Bob Bo
103 | 103 ql0 Carl | Cork

Dept
ID | sec | name
ql0o | 101 CS
x02 | 102 | Math

The Functorial Data Model

» Schemas are categories, and instances are set-valued functors:

manager
(l;r\/np works Dept
. °

secretary

first

last

Dom
°

Emp.manager.works = Emp.works

Dept.secretary.works = Dept

Emp Dept
ID | mgr | works | first | last D secP name
101 [103 | q10 | Al [Akin

qlo | 101 | CS

102 | 102 | x02 | Bob | Bo %02 | 102 | Math

103 | 103 ql0 Carl | Cork

Categories as Entity-Relationship (ER) Diagrams

» Draw edges e —¢ ep,,, as “attributes” e — o5 :

manager
(;:m works Dept
. .

secretary

first
last
Dom
°
manager
works Dept
°
/ \ secretary
fi rst last name
o o

6/23

FQL: A Functorial Query Language

» A schema mapping F': S — T is a path-equality respecting function:
nodes(S) — nodes(T) edges(S) — paths(T')

and it induces three adjoint data migration functors:

» Ap : T-inst — S-inst (like projection)
» X : S-inst — T-inst (like union) (also like the chase)
» IIp : S-inst — T-inst (like join)

» A FQL query has the form X g oIl o Ag, where:

» G is a surjection on attributes (implies “domain independence”)
» Fis a discrete op-fibration (implies “union compatibility”)

» Theorem: FQL queries are closed under composition.

A (Project)

Name Name
O O
Salary Salary
O F O
Nl/ N2 N/
(] o °
Age Age
O O
N1 N2
ID || Name | Salary || ID || Age N ID || Name | Age | Salary
1 Bob $250 1 20 | =] 1 Bob 20 | $250
2 Sue $300 2 20 2 Sue 20 $300
3 Alice $100 3 30 3 Alice 30 $100

23

IT (Join)

[=<

Name

Salary
o

AN

Age Age
O O
ID || Name | Age | Salary

1 Alice 20 $100
N1 N2 2 Alice 20 $100
ID Name | Salary ID || Age 3 Alice 30 $100
T || Bob | $250 || 1 || 20 | —5[4 || Bob | 20 | $250
2 Sue $300 2 20 5 Bob 20 $250
3 Alice $100 3 30 6 Bob 30 $250
7 Sue 20 $300
8 Sue 20 $300
9 Sue 30 $300

23

Y. (Union)

Name Name
fe) o
Salary Salary
o) O
Nl/ N2 N/
° ° °
Age Age
IS o
C— LN L
ID || Name | Salary || ID || Age 5 BIC; nu”1 $250
T || Bob | 8250 || 1 || 20 | i ter o
2 Sue | $300 2]| 20 2 nuthe n;o3 null
. 4 7
3 || Alice | $100 3 30 5 nulls | 20 nulls
6 nullg 30 nullg

10/23

Foreign keys

Name Name
O o
Salary Salary
O F O
Nl/f N2 N/
o —> o []
Age \Age
O O
N1 N2 N
ID || Name | Salary | f ID || Age 1{—2 ID || Name | Age | Salary
1 Bob $250 | 1| 1 20 |51 Alice | 20 | $100
2 Sue $300 2 2 20 2 Bob 20 $250
3 Alice $100 3 3 30 3 Sue 30 $300

11/23

Results

v

SPCU + keygen (sets) can implement FQL queries.
» FQL queries can implement SPCU + keygen (bags).
» FQL queries + post-processing can implement SPCU + keygen (sets).

» The instances on each schema form a topos, and hence can interpret
higher-order logic.

» There is a deep relationship between “non-union-compatible” ¥ and
“the chase”.

» There is a relationship between FQL queries and polynomial functors.

12 /23

The FQL Integrated Development Environment

» The FQL IDE is an open-source java GUI:

» It translates from SQL to FQL, and FQL to SQL (when possible).

» It emits RDF encodings of instances.

» It comes with many built-in examples.

> It can be used as a command-line compiler.
» Download at categoricaldata.net/fgl.html.

13/23

A textual employee instance

O - _FQLIDE —— "
Compile New Open Save Help Options.

Load Example:

Typed ...

Employee, Department;
attributes
name : Department -> string,
first : Employee —> string,
last : Employee —> string;
arrows
manager : Employee —> Employee,
worksIn Employee -> Department,
secretary : Department -= Employee;
equations
Employee.manager.worksIn = Employee.worksIn,
Department.secretary.worksIn = Department,
Employee.manager.manager = Employee.manager;

7
BEinstance T : 5 = {
nodes

Employee > { 101, 102, 163 },
Department —= { gl1@, x02 };

attributes
first -> { (101, Alan), (102, Camille), (103, Andrey) I,
last -» { (181, Turing), (102, Jordan), (103, Markov) },
name -> { {ql@, AppliedMath), (x82, PureMath) };

arrous
manager -> { (101, 103), (162, 182), (163, 183) },
worksin -> { (101, q1@), (162, x02}, (103, q1@) },
secretary - { (q10, 101), (x82, 102) };

‘Compiler resp

DROF DATABASE FQL; CREATE DATABASE FQL; USE FQL; SET @guid := 0;

CREATE TABLE I_Department(cl VARCHAR(128), c0 VARCHAR(128));:

14/23

A graphical employee instance

Select:

schema S

Tabular | Joined | Textual | JSON = Crothendieck]7

i ce | : 5

+

string

Department

string

string

Employee

) [first | manager |worksIn
Camille
Alan
Andrey

15/23

A graphical schema mapping

086
Select:
schema C

schema D
mapping F
instance J : D
instance | : C

Ct1_last

16/23

SQL generation

086 Viewer for Sigma
prlecls Graphical | Tabular JSON
schema C
schema D Mapping F: C-> D DeltaF:D -> C
mapping F: C->D={ INSERT INTO output_h1 SELECT DISTINCT
instance | : C nodes tl.cl AS 1, t0.c0 AS cO FROM input_H AS
instance) - D cl->C, tl, input_A AS t0 WHERE t0.c1 = t1.c0;
c2 ->C,
3 ->C, INSERT INTO output_a2 SELECT = FROM
bl ->B, input_A;
b2 -> B,
al -> A, INSERT INTO output_b2 SELECT * FROM
a3 -> A, input_B;
a2 -> A,
c4->C INSERT INTO output_c1 SELECT * FROM
N input_C;
attributes
INSERT INTO output_al SELECT * FROM
. - inout A:
PiF:C->D SigmaF:C->D

\CREATE TABLE temp0O(c1 VARCHAR(128), c0
VARCHAR(128));

INSERT INTO temp0 SELECT DISTINCT t0.c1
AS cl, t0.c0 AS cO FROM input_c4 ASt0 :

\CREATE TABLE templ(c1l VARCHAR(128), cO
\VARCHAR(128));

INSERT INTO templ SELECT DISTINCT t0.c1
\AS c1, t0.cO AS O FROM input_c3 AS t0 :

\CREATE TABLE temp2(c1 VARCHAR(128), c0
VARCHAR(128));

INSERT INTO input_C SELECT * FROM
output_c1 UNION SELECT = FROM output_c2
UNION SELECT * FROM output_c3 UNION
SELECT * FROM output_c4:

INSERT INTO input_A SELECT * FROM
output_al UNION SELECT * FROM output_a3
UNION SELECT * FROM output_a2;

INSERT INTO input_B SELECT * FROM
output_b1 UNION SELECT * FROM
output_b2;

INSERT INTO input_G SELECT DISTINCT

t1cl AS el t0.c0 AS c0 FROM outnut_al AS

17/23

A graphical query

0.6 Niewer for FOIL
Select: mm' Tabular tual
schema Begin

schema Added
schema Multiplied
mapping F - Begin -> Added
mapping G : Added -> Multiplie|
instance | : Begin

tance) : Added
instance K : Multiplied
query p - Begin -> Added
query q : Added -> Mult

o
o ks;p.p_ﬂfdg}\ . =

Begind res_A.0obj3 in.b

$.

&
e
~es_B.obj4
ey Csigma
__res sigma

res_A.obj2

'51
ol

550
res_A.obj0 .

Multiplied. aPLUSbTIME LFGabj1
Rt

7 res_B.objo
3

|

1;, res_B.obj7

res_B.obje BEJINC

18/23

A genomics instance

806

Gene Ontology - 7:01:21 PM

Select:
schema GeneOntology

instance |_GeneOntology : Gene(

Attributes for 133

| Graphical | Textual

Tabular = Joined W

TermType
biological_process

Id
GO_0006260

Name
DNA replication

19/23

Conclusion

» The functorial data model extends the relational model by
generalizing schemas to categories.

» It is conceptually similar to the Entity-Relationship (ER) model, but
formalized using category theory.

» The FQL IDE is a graphical schema-mapping tool for developing
functorial data migrations.

» Project webpage: categoricaldata.net/fgl.html.

20/23

The Nested Relational Model

» Schemas are higher-order theories, and instances are models:

» Emp: Set (ID:Dom,emps:Set Dom,works:Dom,first:Dom,last:Dom)
Dept: Set (ID:Dom, sec:Dom, name:Dom)

» Query languages include the Nested Relational Calculus:

for (e € Emp)(¢’ € e) where e.ID = ¢’ return (name : e.first)

Emp Dept
ID emps works | first | last D T sec | name
101 {} ql0 Al Akin 410 | 101 S
102 {102} x02 Bob | Bo 2 102 T Math
103 | { 101,103 } qlo Carl | Cork X 2

Algebraic Datatypes

» Implement collections as algebraic datatypes:

» List a = nil | cons t (List a)

Emp:List(ID:Dom,emps:List Dom,works:Dom,first:Dom,last:Dom)

Dept:List(ID:Dom, sec:Dom, name:Dom)
» Folds used to process collections:
fold: (@a—>b—>b)—>b—Lista—b

fold f x nil = x
fold f x (cons h t) =fh (fold f x t)

sum = fold + 0
Emp
Dept
ID emps works | first | last D se?:p p—
101 nil ql0 Al Akin 10 101 s
102 cons 102 nil x02 | Bob | Bo 302 TERRTET
103 | cons 101 (cons 103 nil) | ql0 Carl | Cork

23

