
The Functorial Data Model

Ryan Wisnesky
Department of Mathematics

Massachusetts Institute of Technology
wisnesky@math.mit.edu

PlanBig December 2014

Introduction

§ Goal: describe new work on the mathematical foundations of
information management: the functorial data model.

§ It is conceptually similar to the Entity-Relationship (ER) model, but is
formalized using the modern language of category theory.

§ Its clean mathematical foundations enable many useful applications.
§ Project webpage: categoricaldata.net/fql.html.

§ Sponsored by:
§ ONR grant N000141310260
§ AFOSR grant FA9550-14-1-0031

2 / 23

Categorical Data Models
§ A category is a reflexive, directed, labelled, multi-graph and a set of

path equations:

N
‚

g
((

h

66

f
��

M
‚ N.f.f.g = N.f.h

§ Category theory was instrumental in the development of two
extensions to the relational model, both of which inform work on
language-integrated query (LINQ):

§ The nested relational model generalizes sets to nested collections
and is inspired by monads.

§ Algebraic datatypes implement nested collections using recursion and
are inspired by algebras.

§ The functorial data model generalizes relational schemas to
categories and is inspired by adjunctions.

§ Discovered by Rosebrugh et al in the early 2000s, Spivak, myself, and
others have lately proposed it for information integration.

3 / 23

The Relational Model

§ Schemas are first-order theories, and instances are models:

§ Emp, Dept (1); manager, secretary, first, last, name, works (2)

§ All relations functional, e.g., namepd, nq ^ namepd, n1q Ñ n “ n1

§ All relations total, e.g., Deptpdq Ñ De.Emppeq ^ secretarypd, eq

§ Secretaries work in their depts: secretarypd, eq Ñ workspe, dq

§ Managers work with emps: mgrpe,mq^workspe, dq Ñ workspm, dq

Emp

ID mgr works first last
101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name
q10 101 CS

x02 102 Math

4 / 23

The Functorial Data Model
§ Schemas are categories, and instances are set-valued functors:

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

Emp.manager.works “ Emp.works

Dept.secretary.works “ Dept

Emp

ID mgr works first last
101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name
q10 101 CS

x02 102 Math

5 / 23

Categories as Entity-Relationship (ER) Diagrams
§ Draw edges ‚ Ñf ‚Dom as “attributes” ‚ ´ ˝f :

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

“

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

6 / 23

FQL: A Functorial Query Language

§ A schema mapping F : S Ñ T is a path-equality respecting function:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

and it induces three adjoint data migration functors:

§ ∆F : T -inst Ñ S-inst (like projection)
§ ΣF : S-inst Ñ T -inst (like union) (also like the chase)
§ ΠF : S-inst Ñ T -inst (like join)

§ A FQL query has the form ΣF ˝ΠG ˝∆H , where:
§ G is a surjection on attributes (implies “domain independence”)
§ F is a discrete op-fibration (implies “union compatibility”)

§ Theorem: FQL queries are closed under composition.

7 / 23

∆ (Project)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

∆F
ÐÝÝ

N

ID Name Age Salary

1 Bob 20 $250

2 Sue 20 $300

3 Alice 30 $100

8 / 23

Π (Join)
Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

ΠF
ÝÝÑ

N

ID Name Age Salary

1 Alice 20 $100

2 Alice 20 $100

3 Alice 30 $100

4 Bob 20 $250

5 Bob 20 $250

6 Bob 30 $250

7 Sue 20 $300

8 Sue 20 $300

9 Sue 30 $300

9 / 23

Σ (Union)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

ΣF
ÝÝÑ

N

ID Name Age Salary

1 Alice null1 $100

2 Bob null2 $250

3 Sue null3 $300

4 null4 20 null7
5 null5 20 null8
6 null6 30 null9

10 / 23

Foreign keys

Name
˝

Salary
˝

N1
‚

f // N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary f

1 Bob $250 1

2 Sue $300 2

3 Alice $100 3

N2

ID Age

1 20

2 20

3 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

11 / 23

Results

§ SPCU + keygen (sets) can implement FQL queries.

§ FQL queries can implement SPCU + keygen (bags).

§ FQL queries + post-processing can implement SPCU + keygen (sets).

§ The instances on each schema form a topos, and hence can interpret
higher-order logic.

§ There is a deep relationship between “non-union-compatible” Σ and
“the chase”.

§ There is a relationship between FQL queries and polynomial functors.

12 / 23

The FQL Integrated Development Environment

§ The FQL IDE is an open-source java GUI:
§ It translates from SQL to FQL, and FQL to SQL (when possible).
§ It emits RDF encodings of instances.
§ It comes with many built-in examples.
§ It can be used as a command-line compiler.
§ Download at categoricaldata.net/fql.html.

13 / 23

A textual employee instance

14 / 23

A graphical employee instance

15 / 23

A graphical schema mapping

16 / 23

SQL generation

17 / 23

A graphical query

18 / 23

A genomics instance

19 / 23

Conclusion

§ The functorial data model extends the relational model by
generalizing schemas to categories.

§ It is conceptually similar to the Entity-Relationship (ER) model, but
formalized using category theory.

§ The FQL IDE is a graphical schema-mapping tool for developing
functorial data migrations.

§ Project webpage: categoricaldata.net/fql.html.

20 / 23

The Nested Relational Model

§ Schemas are higher-order theories, and instances are models:

§ Emp: Set (ID:Dom,emps:Set Dom,works:Dom,first:Dom,last:Dom)
Dept: Set (ID:Dom, sec:Dom, name:Dom)

§ Query languages include the Nested Relational Calculus:

for pe P Empqpe1 P eq where e.ID “ e1 return pname : e.firstq

Emp

ID emps works first last
101 { } q10 Al Akin

102 { 102 } x02 Bob Bo

103 { 101,103 } q10 Carl Cork

Dept

ID sec name
q10 101 CS

x02 102 Math

22 / 23

Algebraic Datatypes
§ Implement collections as algebraic datatypes:

§ List a = nil | cons t (List a)

Emp:List(ID:Dom,emps:List Dom,works:Dom,first:Dom,last:Dom)
Dept:List(ID:Dom, sec:Dom, name:Dom)

§ Folds used to process collections:

fold : (a Ñ b Ñ b) Ñ b Ñ List a Ñ b
fold f x nil = x
fold f x (cons h t) = f h (fold f x t)

sum = fold + 0

Emp

ID emps works first last
101 nil q10 Al Akin

102 cons 102 nil x02 Bob Bo

103 cons 101 (cons 103 nil) q10 Carl Cork

Dept

ID sec name
q10 101 CS

x02 102 Math

23 / 23

