Categorical Databases

Patrick Schultz, David Spivak
MIT

Ryan Wisnesky
Categorical Informatics

and others

November 2017
Introduction

- This talk describes a new algebraic (purely equational) way to formalize databases based on category theory.
- Category theory was designed to migrate theorems from one area of mathematics to another, but researchers at MIT developed a way to use it to migrate data from one schema to another.
- Research has culminated in an open-source prototype ETL and data integration tool, AQL (Algebraic Query Language), available at categoricaldata.net/aql.html. (These slides are also there.)
- Goal: Categorical databases needs you – needs a community – to grow.
- Outline:
 - Review of basic category theory.
 - Introduction to AQL.
 - AQL demo.
 - Optional interlude: additional AQL constructions.
 - How AQL instances model the simply-typed λ-calculus.
AQL Value Proposition

- AQL implements this talk in software.
 - catinf.com

- The AQL “execution engine” is an automated theorem prover.
 - High-assurance: AQL catches mistakes at compile time that existing ETL / data integration tools catch at runtime – if at all.
 - Data import and export by JDBC-SQL and CSV.

- We are looking for collaborators for “real-world pilot projects”.
A category C consists of
- a set of objects, $\text{Ob}(C)$
- for all $X, Y \in \text{Ob}(C)$, a set $C(X, Y)$ of morphisms a.k.a arrows
- for all $X \in \text{Ob}(C)$, a morphism $id \in C(X, X)$
- for all $X, Y, Z \in \text{Ob}(C)$, a function $\circ : C(Y, Z) \times C(X, Y) \to C(X, Z)$ s.t.
 \[
 f \circ id = f \quad id \circ f = f \quad (f \circ g) \circ h = f \circ (g \circ h)
 \]

The category Set has sets as objects and functions as arrows, and the “category” Haskell has types as objects and programs as arrows.

A functor $F : C \to D$ between categories C, D consists of
- a function $\text{Ob}(C) \to \text{Ob}(D)$
- for all $X, Y \in \text{Ob}(C)$, a function $C(X, Y) \to D(F(X), F(Y))$ s.t.
 \[
 F(id) = id
 F(f \circ g) = F(f) \circ F(g)
 \]

The functor $\mathcal{P} : \text{Set} \to \text{Set}$ takes each set to its power set, and the functor $\text{List} : \text{Haskell} \to \text{Haskell}$ takes each type t to the type $\text{List } t$.
Schemas and Instances

(manager.works) = [works] [secretary.works] = []
An AQL Schema: Code

entities
 Emp
 Dept

foreign keys
 manager : Emp -> Emp
 works : Emp -> Dept
 secretary : Dept -> Emp

attributes
 first last : Emp -> string
 name : Dept -> string

path equations
 manager.works = works
 secretary.works = Department
Categorical Semantics of Schemas and Instances

- The meaning of a schema S is a category $\lbrack S \rbrack$.
 - $\text{Ob}(\lbrack S \rbrack)$ is the nodes of S.
 - For all nodes X, Y, $\lbrack S \rbrack(X, Y)$ is the set of finite paths $X \to Y$, modulo the path equivalences in S.
 - Path equivalence in S may not be decidable! ("the word problem")
- A morphism of schemas (a "schema mapping") $S \to T$ is a functor $\lbrack S \rbrack \to \lbrack T \rbrack$.
 - It can be defined as an equation-preserving function:
 $\text{nodes}(S) \to \text{nodes}(T)$ \quad $\text{edges}(S) \to \text{paths}(T)$.

- An S-instance is a functor $\lbrack S \rbrack \to \text{Set}$.
 - It can be defined as a set of tables, one per node in S and one column per edge in S, satisfying the path equivalences in S.
- A morphism of S-instances $I \to J$ (a "data mapping") is a natural transformation $I \to J$.
 - Instances on S and their mappings form a category, written S-inst.
Schema Mappings

A schema mapping $F : S \rightarrow T$ is an equation-preserving function:

$$
\text{nodes}(S) \rightarrow \text{nodes}(T) \quad \text{edges}(S) \rightarrow \text{paths}(T)
$$

$F(\text{Int}) = \text{Int} \quad F(\text{String}) = \text{String}$

$F(\text{N1}) = \text{N} \quad F(\text{N2}) = \text{N}$

$F(\text{name}) = [\text{name}] \quad F(\text{age}) = [\text{age}] \quad F(\text{salary}) = [\text{salary}]$

$F(f) = []$
Functorial Data Migration

A schema mapping $F: S \rightarrow T$ induces three data migration functors:

- $\Delta_F: T\text{-inst} \rightarrow S\text{-inst}$ (like project)

 $$
 S \xrightarrow{F} T \xrightarrow{I} \text{Set} \\
 \Delta_F(I) := I \circ F
 $$

- $\Pi_F: S\text{-inst} \rightarrow T\text{-inst}$ (right adjoint to Δ_F; like join)

 $$
 \forall I, J. \quad S\text{-inst}(\Delta_F(I), J) \cong T\text{-inst}(I, \Pi_F(J))
 $$

- $\Sigma_F: S\text{-inst} \rightarrow T\text{-inst}$ (left adjoint to Δ_F; like outer union then merge)

 $$
 \forall I, J. \quad S\text{-inst}(J, \Delta_F(I)) \cong T\text{-inst}(\Sigma_F(J), I)
 $$
\[\Delta \text{ (Project)} \]

\[F \]

\[\Delta F \]

\begin{tabular}{|c|c|c|}
\hline
ID & name & salary \\
\hline
1 & Alice & $100 \ \\
2 & Bob & $250 \ \\
3 & Sue & $300 \ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
ID & age \\
\hline
4 & 20 \ \\
5 & 20 \ \\
6 & 30 \ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline
ID & name & salary & age \\
\hline
a & Alice & $100 & 20 \ \\
b & Bob & $250 & 20 \ \\
c & Sue & $300 & 30 \ \\
\hline
\end{tabular}
Π (Product)

\[\Pi (\text{Product}) \]

\[\begin{array}{ccc}
\text{N1} & \text{N2} & \Pi_{F}
\end{array} \]

\[\begin{array}{|c|c|c|}
\hline
\text{ID} & \text{name} & \text{salary} \\
\hline
1 & Alice & $100 \\
2 & Bob & $250 \\
3 & Sue & $300 \\
\hline
\end{array} \]

\[\begin{array}{|c|c|}
\hline
\text{ID} & \text{age} \\
\hline
4 & 20 \\
5 & 20 \\
6 & 30 \\
\hline
\end{array} \]

\[\begin{array}{|c|c|c|c|}
\hline
\text{ID} & \text{name} & \text{salary} & \text{age} \\
\hline
a & Alice & $100 & 20 \\
b & Alice & $100 & 20 \\
c & Alice & $100 & 30 \\
d & Bob & $250 & 20 \\
e & Bob & $250 & 20 \\
f & Bob & $250 & 30 \\
g & Sue & $300 & 20 \\
h & Sue & $300 & 20 \\
i & Sue & $300 & 30 \\
\hline
\end{array} \]
\(\Sigma \) (Outer Union)

\[\begin{align*}
\Sigma & \quad F \\
\end{align*} \]

\begin{tabular}{|c|c|c|}
\hline
\textbf{N1} & \textbf{ID} & \textbf{Name} \\
\hline
1 & Alice & $100 \\
2 & Bob & $250 \\
3 & Sue & $300 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline
\textbf{ID} & \textbf{Age} \\
\hline
4 & 20 \\
5 & 20 \\
6 & 30 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline
\textbf{N2} & \textbf{ID} & \textbf{Name} & \textbf{Age} \\
\hline
a & Alice & $100 & null_1 \\
b & Bob & $250 & null_2 \\
c & Sue & $300 & null_3 \\
d & null_4 & null_5 & 20 \\
e & null_6 & null_7 & 20 \\
f & null_8 & null_9 & 30 \\
\hline
\end{tabular}
Unit of $\Sigma_F \rightarrow \Delta_F$

<table>
<thead>
<tr>
<th>N1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>Salary</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Alice</td>
<td>$100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>$250</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>$300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Sigma_F \rightarrow \eta \rightarrow \Delta_F$

<table>
<thead>
<tr>
<th>N1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>Salary</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Alice</td>
<td>$100</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Bob</td>
<td>$250</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Sue</td>
<td>$300</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>null_4</td>
<td>null_5</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>null_6</td>
<td>null_7</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>null_8</td>
<td>null_9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>null_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>null_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>null_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Foreign Key

\[F \]

\[\Delta_F \]

\[\Pi_F, \Sigma_F \]

<table>
<thead>
<tr>
<th>N1</th>
<th></th>
<th>N2</th>
<th></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>name</td>
<td>salary</td>
<td>f</td>
<td>ID</td>
</tr>
<tr>
<td>1</td>
<td>Alice</td>
<td>$100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>$250</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>$300</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Queries

A query $Q : S \to T$ is a schema X and mappings $F : S \to X$ and $G : T \to X$.

$$\text{eval}_Q \cong \Delta_G \circ \Pi_F \quad \text{coeval}_Q \cong \Delta_F \circ \Pi_G$$

These can be specified using comprehension notation similar to SQL.

N1 -> select n1.name as name, n1.salary as salary
 from N as n1

N2 -> select n2.age as age
 from N as n2

f -> {n2 -> n1}
A Foreign Key

\[
\begin{array}{c|c|c|c}
\text{ID} & \text{name} & \text{salary} & f \\
1 & Alice & $100 & 4 \\
2 & Bob & $250 & 5 \\
3 & Sue & $300 & 6 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{ID} & \text{age} \\
4 & 20 \\
5 & 20 \\
6 & 30 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{ID} & \text{name} & \text{salary} & \text{age} \\
a & Alice & $100 & 20 \\
b & Bob & $250 & 20 \\
c & Sue & $300 & 30 \\
\end{array}
\]
AQL implements Δ, Σ, Π, and more in software.
 - catinf.com

The AQL “execution engine” is an automated theorem prover.
 - Value proposition: AQL catches mistakes at compile time that existing ETL / data integration tools catch at runtime – if at all.
 - Data import and export by JDBC-SQL and CSV.

We are looking for collaborators for a “real-world pilot project”.
Interlude - Additional Constructions

- What is “algebraic” here?
- AQL vs SQL.
- Pivot.
- Non-equational data integrity constraints.
- Data integration via pushouts.
- AQL vs comprehension calculi.
Why “Algebraic”?

- A schema can be identified with an algebraic (equational) theory.

\[
\begin{align*}
\text{Emp} &\quad \text{Dept} &\quad \text{String} \\
\text{first} &\quad \text{last} &\to \text{Emp} &\to \text{String} \\
\text{name} &\to \text{Dept} &\to \text{String} \\
\text{works} &\to \text{Emp} &\to \text{Dept} \\
\text{mgr} &\to \text{Emp} &\to \text{Emp} \\
\text{secr} &\to \text{Dept} &\to \text{Emp} \\
\forall e : \text{Emp}. \, \text{works}(\text{manager}(e)) = \text{works}(e) \\
\forall d : \text{Dept}. \, \text{works}(\text{secretary}(d)) = d
\end{align*}
\]

- This perspective makes it easy to add functions such as
\(+ : \text{Int}, \text{Int} \to \text{Int} \) to a schema. See *Algebraic Databases*.

- An \(S \)-instance can be identified with the initial algebra of an algebraic theory extending \(S \).

\[
\begin{align*}
101 &\quad 102 &\quad 103 : \text{Emp} \\
q10 &\quad x02 : \text{Dept} \\
\text{mgr}(101) &\equiv 103 \\
\text{works}(101) &\equiv q10 \\
\ldots
\end{align*}
\]

- Treating instances as theories allows instances that are infinite or inconsistent (e.g., Alice=Bob).
Data migration triplets of the form

\[\Sigma_F \circ \Pi_G \circ \Delta_H \]

can be expressed using relational algebra and keygen, provided:

- \(F \) is a discrete op-fibration (ensures union compatibility).
- \(G \) is surjective on attributes (ensures domain independence).
- All categories are finite (ensures computability).

- The difference-free fragment of relational algebra can be expressed using such triplets. See *Relational Foundations*.
- Such triplets can be written in “foreign-key aware” SQL-ish syntax.
Find the name of every manager’s department:

AQL
```
select e.manager.works.name
from Emp as e
```

SQL
```
select d.name
from Emp as e1, Emp as e2, Dept as d
where e1.manager = e2.ID and e2.works = d.ID
```
Pivot (Instance ↔ Schema)

Emp

<table>
<thead>
<tr>
<th>ID</th>
<th>mgr</th>
<th>works</th>
<th>first</th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>103</td>
<td>q10</td>
<td>Al</td>
<td>Akin</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>x02</td>
<td>Bob</td>
<td>Bo</td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>q10</td>
<td>Carl</td>
<td>Cork</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>CS</td>
</tr>
<tr>
<td>x02</td>
<td>Math</td>
</tr>
</tbody>
</table>
Richer Constraints

- Not all data integrity constraints are equational (e.g., keys).
- A data mapping \(\varphi : A \rightarrow E \) defines a constraint: instance \(I \) satisfies \(\varphi \) if for every \(\alpha : A \rightarrow I \) there exists an \(\epsilon : E \rightarrow I \) s.t \(\alpha = \epsilon \circ \varphi \).

\[
\begin{array}{c}
A \xrightarrow{\alpha} I \\
\downarrow \varphi \\
E
\end{array}
\begin{array}{c}
\downarrow \epsilon \\
I
\end{array}
\]

- Most constraints used in practice can be captured the above way. E.g.,

\[
\forall d_1, d_2 : \text{Dept. } \text{name}(d_1) = \text{name}(d_2) \rightarrow d_1 = d_2
\]

is captured as

\[
A(\text{Dept}) = \{d_1, d_2\} \quad A(\text{name})(d_1) = A(\text{name})(d_2) \\
E(\text{Dept}) = \{d\} \quad \varphi(d_1) = \varphi(d_2) = d
\]

- See *Database Queries and Constraints via Lifting Problems* and *Algebraic Model Management*.
Pushouts

- A pushout of \(p, q \) is \(f, g \) s.t. for every \(f', g' \) there is a unique \(m \) s.t.:

\[
\begin{array}{ccc}
| & p & | \\
\downarrow & & \downarrow \\
| & m & | \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\bullet & \bullet & \bullet \\
\end{array}
\]

- The category of schemas has all pushouts.
- For every schema \(S \), the category \(S\)-inst has all pushouts.
- Pushouts of schemas, instances, and \(\Sigma \) are used together to integrate data - see *Algebraic Data Integration*.
Using Pushouts for Data Integration

- Step 1: integrate schemas. Given input schemas S_1, S_2, an overlap schema S, and mappings F_1, F_2:

$$S_1 \xleftarrow{F_1} S \xrightarrow{F_2} S_2$$

we propose to use their pushout T as the integrated schema:

$$S_1 \xrightarrow{G_1} T \xleftarrow{G_2} S_2$$

- Step 2: integrate data. Given input S_1-instance I_1, S_2-instance I_2, overlap S-instance I and data mappings $h_1 : \Sigma_{F_1}(I) \rightarrow I_1$ and $h_2 : \Sigma_{F_2}(I) \rightarrow I_2$, we propose to use the pushout of:

$$\Sigma_{G_1}(I_1) \xleftarrow{\Sigma_{G_1}(h_1)} \left(\Sigma_{G_1 \circ F_1}(I) = \Sigma_{G_2 \circ F_2}(I) \right) \xrightarrow{\Sigma_{G_2}(h_2)} \Sigma_{G_2}(I_2)$$

as the integrated T-instance.
Schema Integration
Data Integration

Observation Table

<table>
<thead>
<tr>
<th>ID</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person ID</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type ID</th>
<th>BP</th>
<th>Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Person Table

<table>
<thead>
<tr>
<th>ID</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender ID</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type Table

<table>
<thead>
<tr>
<th>ID</th>
<th>BP</th>
<th>Wt</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Table

<table>
<thead>
<tr>
<th>ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method ID</th>
<th>null</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation ID</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation Type ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person ID</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender ID</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type ID</th>
<th>BP</th>
<th>Wt</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation ID</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation Method ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person ID</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender ID</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type ID</th>
<th>BP</th>
<th>Wt</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation ID</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation Method ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person ID</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender ID</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type ID</th>
<th>BP</th>
<th>Wt</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation ID</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation Method ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person ID</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender ID</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type ID</th>
<th>BP</th>
<th>Wt</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation ID</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation Method ID</th>
<th>g2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AQL vs LINQ

- Treating entity sets as types rather than terms makes AQL a conceptual dual to comprehension calculi (e.g., LINQ). See QINL: Query-Integrated Languages.

- LINQ enriches programs with (schemas, queries and instances).
 - Collections are terms

 Employee: Set Int
 manager: Set (Int × Int)

 - e: Employee is not a judgment.
 - There is a term ∈: Int × Set Int → Bool.

- AQL enriches (schemas, queries and instances) with programs.
 - Collections are types

 Employee: Type
 manager: Employee → Employee

 - e: Employee is a judgment.
 - There is not a term ∈: Employee × Type → Bool.

- LINQ is more popular, but AQL’s style is common in Coq, Agda, etc.
AQL is “one level up” from LINQ

- **LINQ**
 - Schemas are collection types over a base type theory
 \[
 \text{Set} (\text{Int} \times \text{String})
 \]
 - Instances are terms
 \[
 \{(1, \text{CS})\} \cup \{(2, \text{Math})\}
 \]
 - Data migrations are functions
 \[
 \pi_1 : \text{Set} (\text{Int} \times \text{String}) \rightarrow \text{Set Int}
 \]

- **AQL**
 - Schemas are type theories over a base type theory
 \[
 \text{Dept}, \text{name} : \text{Dept} \rightarrow \text{String}
 \]
 - Instances are term models (initial algebras) of theories
 \[
 d_1, d_2 : \text{Dept}, \text{name}(d_1) = \text{CS}, \text{name}(d_2) = \text{Math}
 \]
 - Data migrations are functors
 \[
 \Delta_{\text{Dept}} : (\text{Dept, name: Dept} \rightarrow \text{String})\text{-inst} \rightarrow (\text{Dept} \text{-inst}
 \]
Part 2

- For every schema \(S \), \(S \)-inst models simply-typed \(\lambda \)-calculus (STLC).
- The STLC is the core of typed functional languages ML, Haskell, etc.
- We will use the internal language of a cartesian closed category, which is equivalent to the STLC.
- Lots of “point-free” functional programming ahead.
- The category of schemas and mappings is also cartesian closed - see talk at Boston Haskell.
Categorical Abstract Machine Language (CAML)

- **Types** t:
 \[t ::= 1 \mid t \times t \mid t^t \]

- **Terms** f, g:
 \[
 \begin{align*}
 id_t &: t \to t \\
 ()_t &: t \to 1 \\
 \pi^1_{s,t} &: s \times t \to s \\
 \pi^2_{s,t} &: s \times t \to t \\
 eval_{s,t} &: t^s \times s \to t \\
 f &: s \to u \\
 g &: u \to t \\
 (f, g) &: s \to t \times u \\
 g \circ f &: s \to t \\
 \end{align*}
 \]

- **Equations**:
 \[
 \begin{align*}
 id \circ f &= f \\
 f \circ id &= f \\
 f \circ (g \circ h) &= (f \circ g) \circ h \\
 () \circ f &= () \\
 \pi^1 \circ (f, g) &= f \\
 \pi^2 \circ (f, g) &= g \\
 (\pi^1 \circ f, \pi^2 \circ f) &= f \\
 eval \circ (\lambda f \circ \pi^1, \pi^2) &= f \\
 \lambda(eval \circ (f \circ \pi^1, \pi^2)) &= f
 \end{align*}
 \]
Programming AQL in CAML

- For every schema S, the category S-inst is cartesian closed.
 - Given a type t, you get an S-instance $[t]$.
 - Given a term $f : t \rightarrow t'$, you get a data mapping $[f] : [t] \rightarrow [t']$.
 - All equations obeyed.

- S-inst is further a topos (model of higher-order logic / set theory).

- We consider the following schema in the examples that follow:

```
a  f  b
```

a f b

32 / 36
The unit instance 1 has one row per table:

\[
\begin{array}{c|c}
\text{a} & \text{b} \\
\hline
\text{ID} & \text{f} \\
\hline
x & x \\
\end{array}
\]

The data mapping \(()_t : t \rightarrow 1 \) sends every row in \(t \) to the only row in 1. For example,

\[
\begin{array}{c|c|c|c}
\text{p} & \text{q} & \text{r} & \text{t} \\
\hline
\text{ID} & \text{f} & \text{ID} & \text{ID} \\
\hline
\text{q} & \text{x} & \text{t} & \text{x} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{a} & \text{b} & \text{a} & \text{b} \\
\hline
\text{ID} & \text{f} & \text{ID} & \text{ID} \\
\hline
\text{x} & \text{x} & \text{x} & \text{x} \\
\end{array}
\]

\(p, q, r, t \xrightarrow{()_t} x \)
Programming AQL in CAML: Products

- Products $s \times t$ are computed row-by-row, with evident projections $\pi^1 : s \times t \rightarrow s$ and $\pi^2 : s \times t \rightarrow t$. For example:

$\begin{array}{c|c|c} a & f \\ \hline ID & 1 & 3 \\ \hline 2 & 3 \\ \end{array} \quad \begin{array}{c|c|c} b & ID \\ \hline & 3 \\ \hline & 4 \\ \end{array} \quad \begin{array}{c|c|c} a & f \\ \hline ID & a & c \\ \hline b & c \\ \end{array} \quad \begin{array}{c|c} b & ID \\ \hline & (1,a) \\ \hline & (1,b) \\ \hline & (2,a) \\ \hline & (2,b) \\ \end{array}$

\times

$\begin{array}{c|c} a & b \\ \hline f & c \\ \hline d \\ \end{array}$

- Given data mappings $f : s \rightarrow t$ and $g : s \rightarrow u$, how to define $(f, g) : s \rightarrow t \times u$ is left to the reader.
 - hint: try it on π^1 and π^2 and verify that $(\pi^1, \pi^2) = id$.

}\end{document}
Exponentials \(t^s \) are given by finding all data mappings \(s \rightarrow t \):

\[
\begin{array}{c|c}
\text{a} & \text{b} \\
\hline
\text{ID} & \text{f} \\
\hline
1 & 3 \\
2 & 3 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{c|c}
\text{a} & \text{b} \\
\hline
\text{ID} & \text{f} \\
\hline
3 & a \\
4 & c \\
\end{array}
\quad =
\begin{array}{c|c}
\text{b} & \\
\hline
\text{ID} & \\
\hline
3 & c \\
4 & d \\
\end{array}
\]

<table>
<thead>
<tr>
<th>a</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d)</td>
</tr>
<tr>
<td>1</td>
<td>(b, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d)</td>
</tr>
<tr>
<td>1</td>
<td>(a, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d)</td>
</tr>
<tr>
<td>1</td>
<td>(b, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d)</td>
</tr>
<tr>
<td>1</td>
<td>(a, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c)</td>
</tr>
<tr>
<td>1</td>
<td>(b, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c)</td>
</tr>
<tr>
<td>1</td>
<td>(a, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c)</td>
</tr>
<tr>
<td>1</td>
<td>(b, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c)</td>
</tr>
</tbody>
</table>

Defining \(\text{eval} \) and \(\lambda \) are left to the reader.
Concussion

- We described a new “algebraic” approach to databases based on category theory.
 - Schemas are categories, instances are set-valued functors.
 - Three adjoint data migration functors, Σ, Δ, Π manipulate data.
 - Instances on a schema model the simply-typed λ-calculus.
- Our approach is implemented in AQL, an open-source project, available at catinf.com.
- Collaborators welcome!
 - We are looking for “real-world pilot projects”.