7 March 2017

Simple Aggregations in Algebraic Databases

Patrick Schultz, David I. Spivak, Ryan Wisnesky

Abstract

This document describes an extension to the Algebraic Databases formalism (Schultz & Wisnesky,
2017) that allows for simple aggregations in uber-flower queries.

1 Extending Multi-sorted Equational Logic

In this paper we define a syntax, semantics, and proof system that extends multi-sorted
equational logic. This system is used in the AQL tool to implement simple aggregations in
uber-flower queries.

1.1 Syntax
A signature Sig consists of:

1. A set Sorts whose elements are called sorts,

2. A set Symbols of pairs (f,s1 X ... x sy — s) with sq,...,8,5 € Sorts and no f
occurring in two distinct pairs. We write f : X instead of (f,X) € Symbols. When
k=0, we may call f a constant symbol and write f : s instead of f : — 5. Otherwise,
we may call f a function symbol.

We assume we have some countably infinite set {vi,v,,...}, whose elements we call
variables and which are assumed to be distinct from any sort or symbol we ever consider.
A context I" is defined as a finite set of variable-sort pairs, with no variable given more than
one sort:

Ci={vyist,...,v: S}

We inductively define the set Terms®(Sig,I') of terms of sort s over signature Sig and
context I as:

1. x € Terms*(Sig,I'),ifx:s €T,

2. f(t1,...,tx) € Terms*(Sig,I'), if f:s1 X ... x s — s and #; € Terms® (Sig,I") for
i=1,...,k. When k = 0, we may write f for f().

3. (f,0){for I where t; =t},...,1y = t; return e} € Terms*(Sig,I’) whenI" is a
context such that T'NI" =@ and f:sxs— sand o: s and e € Terms*(Sig, TUT")
and for every 1 <i < k there exists a sort s; such that #;,#/ € Terms* (Sig, [UI").

Note that the monoid comprehensions (for I'-terms) are binding constructs: the vari-
ables in I are considered bound. (Capture-avoiding) substitution of a term ¢ for a variable
vin a term e is written as e[v — ¢] and is defined as usual.

7 March 2017

An equation over Sig is a formula VI'. 1} =, : s with t1, 1, € Terms*(Sig,T"); we will omit
the : s when doing so will not lead to confusion. A theory is a pair of a signature and a set
of equations over that signature. Associated with a theory T/ is a binary relation between
terms, called provable equality. We write Th = VI. t =¢' : s to indicate that the theory
Th proves that terms t,t' € Terms®(Sig,T’) are equal according to the usual rules of multi-
sorted equational logic extended with five monoid comprehension laws. The equational
logic rules are

t € Terms*(Sig,T) TheVL.t=1":5 ThtvVL.t=1":s ThEVL.{' =1":5s

Tht=VI.t=t:s Th=VI.f' =t:s Thi=VL.t=1":s
ThtVL.t=t:s v¢rl ThtVL,v:s.t=t:s ThhVl.e=¢':s
Th=NTyv:s . t=1t":s ThV.tvs e =t v e s

and the monoid rules are

ThEVT. (f,0){for — where — returne} =e¢

ThEVT. (f,0){for I where ¢ returno} =0

Th=VT. (f,0){for I where ¢ return f(e,¢')} = f(
(f,0){for I where ¢ return e}, (f,0){for I where ¢ returne'})

ThVT. (f,0){for I where ¢ return (f,0){for I'" where ¢’ return e} =
(f,0){for I'UI"” where ¢ U¢ return e}

Ththo)=0" ThtVxy.h(f(x.y) = f'(h(x),h(y))
ThtVT.h((f,0){for I where ¢ returne}) =
(f,0'){for I where ¢ return h(e)}

We say that a theory Th is OK for aggregation when, for every term in 7h of the form
(f,0){for I' where f return e}
we have
Th+="Vxyz. f(x, f(3,2)) = f(f(x,¥),2) ThH'Vx. f(x,0)=x=f(0,x) Th+ Vxy.f(x,y)= f(y,x)

where Tht' ¢ indicates that Th entails ¢ under the rules of multi-sorted equational logic
without use of the monoid laws. We only consider theories that are OK for aggregation.

1.2 Semantics
An algebra A over a signature Sig consists of:

e aset A(s) for each sort s; the elements of A(s) are called carriers, and

7 March 2017

e afunction A(f) :A(s1) X ... x A(sg) — A(s) for each symbol f :s; X ...s; — 5.

Let I' := {x; : s1,...,%, : s, } be a context. An A-environment 1 for I" associates each
variable x; with an element of A(s;). Write [I'] to indicate the set of all A-environments for
I.

The meaning of a term ¢ in Terms(Sig,I") relative to A-environment 7 for I is written
[£]n and recursively defined as:

[n=n() [f,....t)In =AF)[n]n, . [60n)
To extend the above definition to aggregations
[(f,0){for I wheret; =1{,... return e}|n
first define the set
g={n"In"ell].[n]Inun =[xlnun’,.. }
and the meaning of the agg term is

e A(o) if € is empty,

o [e]munif&={n},

o A(f)([e]niuUn,[elnyUn) if & = {n{, 05},
e ctc

References

Patrick Shultz & Ryan Wisnesky Algebraic Data Integration.

7 March 2017

	Extending Multi-sorted Equational Logic
	Syntax
	Semantics

	References

