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Introduction The fabric of interdisciplinarity

A road to true interdisciplinarity

Scientific disciplines are conceptual analogies of the world.
Science: a schematic, conceptual account of phenomena.
Engineering is using these accounts to channel world events.
But how do different disciplines and accounts cohere?
To solve big problems, we need to connect different approaches.

We need a shared fabric, a substrate for interdiscipinarity.
Interdisciplinarity consists of effective analogy-making.
To go further, we need to formalize the analogies themselves.

Better yet: we need a conceptual stem-cell.
Something that can differentiate into huge variety of forms.
Find the analogies between forms as aspects within the stem cell.
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Introduction The fabric of interdisciplinarity

Category theory as conceptual stem-cell
Category theory (CT) can differentiate into many forms:

All forms of pure math... (we’ll briefly discuss this)

Databases and knowledge representation (categories and functors)
Functional programming languages (cartesian closed categories)
Universal algebra (finite-product categories)
Dynamical systems and fractals (operad-algebras, co-algebras)
Shannon Entropy (operad of simplices)
Partially-ordered sets and metric spaces (enriched categories)
Higher order logic (toposes = categories of sheaves)
Measurements of diversity in populations (magnitude of categories)
Collaborative design (enriched categories and profunctors)
Petri nets and chemical reaction networks (monoidal categories)
Quantum processes and NLP (compact closed categories)
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Introduction The fabric of interdisciplinarity

Popper’s objection

“A theory that explains everything explains nothing.” – Karl Popper

We counter this objection in two ways:
Couldn’t the same objection be made about mathematics?

Mathematics is the basis of hard science, used everywhere.
CT—like math—explains, models, formalizes many many things.
Conclude that math/CT explains everything and hence nothing?

Stem cells don’t do work until they differentiate.
“Adult-level” work requires differentiation and optimization.
But the unified origins lead to impressive interoperability.
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Introduction Our historical moment

CT is the mathematics of mathematics.
You could also say: CT is mathematics, self-aware.

Designed to transport theorems from one area of math to another.
From topology (shapes) to algebra (equations).
This isn’t mere analogy, it’s analogy made rigorous.

It’s revolutionized pure math since its inception in 1940s.
Most modern pure math research is written cat.-theoretically.
It’s become a gateway to pure mathematics.

And it’s branched out from math in a big way.
Databases and knowledge representation (categories and functors)
Functional programming languages (cartesian closed categories)
Dynamical systems and fractals (operad-algebras, co-algebras)
Shannon Entropy (operad of simplices)
Measurements of diversity in populations (magnitude of categories)
Collaborative design (enriched categories and profunctors)
Petri nets and chemical reaction networks (monoidal categories)
Quantum processes and NLP (compact closed categories)
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Introduction Our historical moment

Our historical moment

Compare the information revolution to the industrial revolution:

Industrial revolution
Sewage in streets, runoff in rivers, smog in skies.
Uncontrolled flows of stuff.

Information revolution
Big data is messy: it’s gleaned, not channeled.
Break Humpty Dumpty into a thousand pieces, then reconstruct?
Uncontrolled flows of information.

If you care about information hygiene, CT needs to be on your radar.
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Introduction Plan of the talk

Getting to specifics

The category-theoretic stem cell is about compositional design patterns.

Let’s focus on one: Data frameworks and data transformations.
The problem: multiple models of similar information
What is “model-space”?
Category theory offers a mathematical notion of model-space.
The kinematics of data: how it moves and rests.
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Introduction Plan of the talk

Plan of the talk

The problem: pervasive and insidious.
The math: Category theory describes kinematics of data.
The tool: Open-source implementation and commercialization.

7 / 35



The problem
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An invitation to engage with us, and solve real-world problems.
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The problem The Copernican revolution continues

The Copernican revolution continues

The earth was the center; then the sun; then no need for center.

Having a world-center provides an origin; good for coordinating.
But there isn’t just one best coordinate system.
Each coordinate system is a perspective, a basis for calculation.

(Read the above in terms of algebra and in terms of information.)
Linear Algebra studies coordinate systems and transformations.
But people still search for the “best” information model.

E.g. OMOP in EMRs
BFO, CIDOC, SUMO, etc., etc. in upper ontologies

Let’s change focus to transformations.
Multiplicity of perspectives is not going away. Let’s learn to integrate.
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The problem The Copernican revolution continues

Information integration

Information:
It’s constantly being generated;
It arises from multiple sources and perspectives;
Our understanding of it evolves over time.
It must be integrated to solve larger problems.

Information integration:
Putting things together.
Making connections, drawing analogies.
Finding common structures.

Information kinematics:
Information rests in databases.
Information moves by data transformations.
Let’s dig in.
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The problem Information kinematics

Information kinematics

Information rests primarily in databases.
Domain knowledge informs the structure of the database.

The structure is called the database schema.
It consists of a collection of interlocking tables.

The data itself is structured according to the schema.
Unstructured data is not yet informative.
It becomes informative through work: structuring it or mining it.

Information moves through transformations.
Different situations require different data structures.
A query transforms data from one structure (schema) to another.

The result of a query arrives a schema with only one table.
This is a limitation of current notions of querying.

Other transformations: ETL, schema evolution, warehousing
Think vector spaces and linear transformations.
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The problem Information kinematics

What is a database?

Information rests primarily in databases.

A database consists of a bunch of interlocking tables.
Each table represents some sort of entity:

Its rows represent examples of that entity.
Its columns represents aspects of that entity.

Example: name and owner are aspects of a house-cat.
The house-cat is an entity.
The house-cat table has a name column.
The house-cat table has an owner column.
A house-cat owner is a person, an entity of type person.

House-cat Name Owner
C101 Prince Charming P52
C241 Patches P52
C468 Mittens P81

Person Name
P17 Alice
P52 Bob
P81 Carl
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The problem Information kinematics

The house-cat schema
Domain knowledge:

House-cats have names and owners;
owners are people; and
people have names.

The database collects worldly examples of this knowledge:
House-cat Name Owner

C101 Patches P52
C241 Mittens P52
C468 Prince Charming P81

Person Name
P17 Alice
P52 Bob
P81 Carl

String
Mittens
Patches

...

The schema for this knowledge can be drawn as a graph:

S :=

House-cat• Person•

String
◦

Owner

Name Name

Each column connects its table to another “foreign” table.
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The problem Information kinematics

A bit more interesting

Let’s add loops and integrity constraints:

mySchema :=

Employee
•

Department
•

string
◦

$
◦

WorksIn

FName

Mngr
Secr

DName Bdgt

d.Secr.WorksIn = d (∀ d:Department)

Employee FName WorksIn Mngr
1 Alan 101 2
2 Ruth 101 2
3 Kris 102 3

String
Alan
IT

...

Department DName Secr Bdgt
101 Sales 1 $10
102 IT 3 $5

x : $
$5
$6

...

Stats:
1. Three dots, three tables, three ID columns.
2. Six arrows, six non-ID columns.
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The problem Information kinematics

What is data transformation?

Data transformation is changing the form of data.
When data is resting in one form, but you want it in another....

Examples:
Alice might want to know who her department secretary is.

That’s a query.
FOR e:Employee
WHERE e.FName = Alice
RETURN e.WorksIn, e.WorksIn.Secr.FName

It’s a way of transforming data: form A to form B:

A :=
Employee
•

Department
•

string
◦

$
◦

WorksIn

FName

Mngr
Secr

DName Bdgt

B :=
Alice
•

string
◦

SecNameDeptName
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The problem Information kinematics

What’s the problem?

Data transformation is poorly understood in IT culture.

Linear algebra analogy:
Imagine using vector spaces but not linear transformations.
No idea about matrices, eigenvalues, PCA, etc.
There’s a lot of room for improvement.

Information management is perhaps the biggest problem today.
Calculus and diff. eq.? We can hire people to do that.
But 40% of IT budgets are spent on information integration.
We’re constantly breaking and reviving Humpty Dumpty.
IT culture has a poor understanding of data transformations.

If science needs math, what math underlies data science?
A huge opportunity to clean up our information Dumpty problem.
To properly handle information, we must understand it formally.
AI beyond ML requires information agility.

Let’s talk math.
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The math

Outline

An invitation to engage with us, and solve real-world problems.
1 Introduction

2 The problem

3 The math
What’s a category?
Data as set-valued functor
Functorial schema mapping and data migration
Data transformations
Databases and RDF

4 The tool
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The math What’s a category?

Definition of a category I: Constituents

A category C consists of the following constituents:

1 A class Ob(C), called the objects of C.
Objects x ∈ Ob(C) are written as •x .

2 A set Arr(C), called the set of arrows of C, and two functions

src, tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.
An arrow f ∈ Arr(C) is written x• f−→

y
•, where x = src(f ), y = tgt(f ).

A path in C is a finite “head-to-tail” sequence f1 # · · · # fn of arrows

x0• f1−−→ x1• f2−−→ · · · fn−−→ xn• .

Can have n = 1 (one arrow), or n = 0 (just a node).
3 An notion of equivalence for paths, denoted '.

16 / 35



The math What’s a category?

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A class Ob(C), called the objects of C.

Objects x ∈ Ob(C) are written as •x .

2 A set Arr(C), called the set of arrows of C, and two functions

src, tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.
An arrow f ∈ Arr(C) is written x• f−→

y
•, where x = src(f ), y = tgt(f ).

A path in C is a finite “head-to-tail” sequence f1 # · · · # fn of arrows

x0• f1−−→ x1• f2−−→ · · · fn−−→ xn• .

Can have n = 1 (one arrow), or n = 0 (just a node).
3 An notion of equivalence for paths, denoted '.

16 / 35



The math What’s a category?

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A class Ob(C), called the objects of C.

Objects x ∈ Ob(C) are written as •x .
2 A set Arr(C), called the set of arrows of C, and two functions

src, tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.
An arrow f ∈ Arr(C) is written x• f−→

y
•, where x = src(f ), y = tgt(f ).

A path in C is a finite “head-to-tail” sequence f1 # · · · # fn of arrows

x0• f1−−→ x1• f2−−→ · · · fn−−→ xn• .

Can have n = 1 (one arrow), or n = 0 (just a node).
3 An notion of equivalence for paths, denoted '.

16 / 35



The math What’s a category?

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A class Ob(C), called the objects of C.

Objects x ∈ Ob(C) are written as •x .
2 A set Arr(C), called the set of arrows of C, and two functions

src, tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.
An arrow f ∈ Arr(C) is written x• f−→

y
•, where x = src(f ), y = tgt(f ).

A path in C is a finite “head-to-tail” sequence f1 # · · · # fn of arrows

x0• f1−−→ x1• f2−−→ · · · fn−−→ xn• .

Can have n = 1 (one arrow), or n = 0 (just a node).

3 An notion of equivalence for paths, denoted '.

16 / 35



The math What’s a category?

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A class Ob(C), called the objects of C.

Objects x ∈ Ob(C) are written as •x .
2 A set Arr(C), called the set of arrows of C, and two functions

src, tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.
An arrow f ∈ Arr(C) is written x• f−→

y
•, where x = src(f ), y = tgt(f ).

A path in C is a finite “head-to-tail” sequence f1 # · · · # fn of arrows

x0• f1−−→ x1• f2−−→ · · · fn−−→ xn• .

Can have n = 1 (one arrow), or n = 0 (just a node).
3 An notion of equivalence for paths, denoted '.

16 / 35



The math What’s a category?

Definition of a category II: Rules
These constituents must satisfy the following requirements:

1 If p ' q are equivalent paths then the sources agree: src(p) = src(q).
2 If p ' q are equivalent paths then the targets agree: tgt(p) = tgt(q).

3 Suppose we have two paths (of any lengths) b → c:

• · · · •

b• c•

• · · · •

p

q

If p ' q then for any extensions

a• b• c•m '
p

q
or b• c• d•'

p

q

n

We have equivalences: m # p ' m # q and p # n ' q # n.
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The math What’s a category?

Categories = database schemas

Employee
•

Department
•

string
◦ $◦

WorksIn

FName

Mngr
Secr

DName Bdgt

d.Secr.WorksIn = d (∀ d:Department)

Database schemas are categories!
The objects of the category C are tables.
The arrows of C are columns, connecting one table to another.
The integrity constraints are path equations.
We brush some details under the rug (distinction between • and ◦).

But there are also categories that are well-known in math.

18 / 35



The math What’s a category?

Categories = database schemas

Employee
•

Department
•

string
◦ $◦

WorksIn

FName

Mngr
Secr

DName Bdgt

d.Secr.WorksIn = d (∀ d:Department)

Database schemas are categories!
The objects of the category C are tables.
The arrows of C are columns, connecting one table to another.
The integrity constraints are path equations.
We brush some details under the rug.

But there are also categories that are well-known in math.

18 / 35



The math What’s a category?

Categories from mathematics

Categories are everywhere in mathematics.
The category Set of sets:

Objects = all sets
arrows S → T = all functions from S to T
paths = composable functions S0 → S1 → · · · → Sn
paths equivalent ⇐⇒ same composite function

The category Vect of vector spaces
Objects = vector spaces
arrows = linear transformations....

The category of measurable spaces
The category of metric or topological spaces,
The category Cat of categories.

There’s also a notion of mapping between categories: functors.
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The math Data as set-valued functor

Functors: mappings between categories

What’s a functor?

Recall: a category is a directed graph with path equivalences.
A functor is a graph mapping that respects path equivalence.

Definition: A functor F : C → D consists of
a function Ob(C)→ Ob(D) and
a function Arr(C)→ Path(D),

such that F
respects sources and targets,
respects equivalences of paths.
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The math Data as set-valued functor

Functors and databases
Recall:

A category C is basically a database schema.
A functor C → D is a graph mapping that preserves equivalences.

Set is a category; recall
its objects are all sets
its arrows S → T are functions, and
two paths are equivalent if they compose to the same function.

A functor C → Set fills schema C with data.
Example: Let C be the category on the left.
Then here’s an example functor I : C → Set :

C :=
A B

C

f

g I :=

a1• a2• a3• b1• b2•

c•
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The math Data as set-valued functor

Schema=Category, Instance=Set-valued functor

Let C be the following category

C :=

Employee
•

Department
•

string
◦

WorksIn

FName

Mngr
Secr

DName

d.Secr.WorksIn = d ∀d : Department

A functor I : C → Set consists of
A set for each object of C and
a function for each arrow of C, such that
the declared equations hold.

In other words, I fills the schema with compatible data.

I :=
Employee FName WorksIn Mngr

1 Alan 101 2
2 Ruth 101 2
3 Kris 102 3

Department DName Secr Bdgt
101 Sales 1 $10
102 IT 3 $5
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The math Data as set-valued functor

Summary of the connection

The connection between categories and databases is simple.
A database schema is a custom category.
Functors I : C → Set are database instances.
What about functors F : C → D between schemas?

23 / 35



The math Data transformations

Data transformations

We want to move data between different frameworks.
Data is resting in schema C.
We want to move it in a specific way to schema D.
We can specify this transformation using functors.
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The math Data transformations

Functorial data migration

We can do all sorts of data transformations using functors.
Queries, ETL processes, warehousing, schema evolution, etc.

A functor C → D
sends nodes to nodes,
sends arrows to paths, and
respects path equivalence.

But functors play two roles here:
They connect schemas to schemas, F : C → D
They connect schemas to data, I : D → Set.
Upshot: one can compose and get a functor (F # I) : C → Set.

Functor composition becomes data transformation:
∆F : D-Inst→ C-Inst.

Applying ∆F to I is called “pulling I back along F ”.
∆F has two forward-directional adjoints, ΣF and ΠF .
Let’s back up a little.
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The math Data transformations

The category of instances

Given a schema C, the category of instances on C is denoted C-Inst.
The objects of C-Inst are functors (instances) I : C → Set.
The arrows are insertions and deduplications of data.

Functors between schemas allow us to move data between them.
Given a functor F : C → D,
There are automatically three data transformation functors

C-Inst D-Inst
ΣF

ΠF

∆F

Roughly: ∆=project, delete; Σ=sum, union; Π=product, join.
∆,Σ,Π were known by mathematicians in 1960. “Kan extensions”.
But they had no idea ∆,Σ,Π correspond to DB rel’l algebra (1970).

There’s a lot of mathematics ready made for hygienically moving data.
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The math Databases and RDF

Example: The Grothendieck construction

Let C be a category and let I : C → Set be a functor.
We can convert I into a category Gr(I) in a canonical way:

Example:

C :=
A B

C

f

g I :=

a1• a2• a3• b1• b2•

c•

Gr(I) is also known as the category of elements of I:

Gr(I) =

a1• a2• a3• b1• b2•

c•
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The math Databases and RDF

This applies to database instances
Suppose given the following instance, considered as I : C → Set

Employee
Id FName Mgr WorksIn
1 Alan 3 101
2 Ruth 2 102
3 Kris 3 101

Department
Id Name Secr
101 Sales 1
102 IT 2

C :=

Employee
•

Department
•

string
◦

w

f

m
s

n

Department.Secr.WorksIn = Department

Here is Gr(I), the category of elements of I:

Gr(I) =

1
•

2
•

3
•

101
•

102
•

· · ·
Abe
◦

Alan
◦

Alice
◦ · · ·

Kris
◦

· · ·
Isaac
◦

IT
◦ · · ·

Ruth
◦

Sales
◦

m

f

w

f
s

n
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The math Databases and RDF

Relations to RDF
The category of elements comes with a functor π : Gr(I) −→ C.

1
•

2
•

3
•

101
•

102
•

· · ·
Abe
◦

Alan
◦

Alice
◦ · · ·

Kris
◦

· · ·
Isaac
◦

IT
◦ · · ·

Ruth
◦

Sales
◦

m

f

w

f
s

n π
−−−→

Employee
•

Department
•

string
◦

w

f

m

s

n

d.s.w = d

Relation to RDF triple stores and schemas:
Each arrow x f−→ y in Gr(I) is an RDF triple (x , f , y).

subject=x , predicate=f , object =y .
Example: (1, FName, Alan) or (101, Secr, 1)

Category theoretic model of RDF
Think of Gr(I) as RDF triple store, C as RDF schema.
SPARQL graph pattern queries fit easily into the model.
Models embedded dependencies (analogous to OWL schemas).
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The tool

Outline

An invitation to engage with us, and solve real-world problems.

1 Introduction

2 The problem

3 The math

4 The tool
The history of AQL
AQL Capabilities

5 Conclusion
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The tool The history of AQL

The history of AQL

The mathematical foundations of this story are old.
The basic idea was known to mathematicians 60 years ago.
More recently we’ve learned a lot about how to calculate them fast.
Getting data types (◦string) into the picture is a little more delicate.

I realized the connection to data transformations in around 2008.
I hired Ryan Wisnesky, a Harvard CS grad student, to code it.
Ryan joined me as a postdoc at MIT.
The math was finally completed in 2015.
I learned a lot about the difference between math and code.

“Beware of bugs in the above code; I have only proved it correct,
not tried it.” – Donald Knuth

We received funding from various government agencies.
ONR, AFOSR, NIST, NSF.

A company spun out of MIT in 2015.
Categorical Informatics Inc.
All MIT IP is open source, all Catinf IP is not.
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All MIT IP is open source, all Catinf IP is not.
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The tool AQL Capabilities

AQL Capabilities

Import / export CSV, SQL, JSON, RDF, XML, etc.

Check schema mappings and queries for functoriality, at compile time.
Achieved using various automated theorem provers.
Know in advance that landed data will satisfy all target constraints.

ETL functionality: transform data (Σ,∆,Π) at scale.
Incorporates any function from across JVM languages (JavaScript,
Java, Python, etc).

Arbitrary user-defined functions, e.g. edit-distance between strings.
Can specify and reason about them, e.g. for database transformations.

Data integration and warehousing: compute limits and colimits.
Check, clean, or repair against rich data integrity constraints

Repair using Chase algorithm on existential Horn clauses (EDs)
And more ( natural transformations, algebraic theories, profunctors, Grothendieck construction, (co-) monads...,
simply-typed lambda calculus )
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The tool AQL Capabilities

Screenshot
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An invitation to engage with us, and solve real-world problems.

1 Introduction

2 The problem

3 The math

4 The tool

5 Conclusion
The bigger picture, again
Summary of the talk

32 / 35



Conclusion The bigger picture, again

The bigger picture, again

The point of all that was to give a glimpse into category theory.
A simple principle—data transformations—formalized mathematically.

And this database stuff is just one part of category theory.
CT has formalized the principles of mathematics, in mathematics.
Space, measure, operation, data, symmetry, equivalence, syntax.
There is a web of interconnection between all these principles.

CT been recently highlighted by agencies such as NIST and DARPA.
CT stem cell leads to interoperability and compositionality.
It compresses and connects big ideas.
It helps you take care of all the corner cases.
Through strong abstraction principles, it exposes conceptual neighbors.
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Conclusion Summary of the talk

Summary of the talk

Today: the connection between databases and categories.

mySchema :=

Employee
•

Department
•

string
◦

WorksIn

FName

Mngr
Secr

DName

Department.Secr.WorksIn = Department

Employee FName WorksIn Mngr
1 Alan 101 2
2 Ruth 101 2
3 Kris 102 3

Department DName Secr
101 Sales 1
102 IT 3

String
Alan
IT

...

Information kinematics—how data moves—is well-modeled by CT.
With a good understanding, we save a lot of time and effort.
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Conclusion Summary of the talk

For more...

Book: An Invitation to Applied Category Theory: Seven Sketches in
Compositionality. Cambridge University Press, July 2019.
https://arxiv.org/abs/1803.05316

Company: Categorical Informatics. Website: http://catinf.com

Community: Category Theory Seminar, Thursdays 4:30 – 5:30, MIT
Building 2, room 255. http://brendanfong.com/seminar.html

Thanks for the invitation to speak!
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