Categorical Databases

David I. Spivak

Department of Mathematics Massachusetts Institute of Technology Categorical Informatics Inc. www.catinf.com

> Presented at Kensho February 27, 2019

Outline

An invitation to engage with us, and solve real-world problems.

1 Introduction

- The fabric of interdisciplinarity
- Our historical moment
- Plan of the talk

2 The problem

3 The math

4 The tool

5 Conclusion

A road to true interdisciplinarity

Scientific disciplines are conceptual analogies of the world.

- Science: a schematic, conceptual account of phenomena.
- Engineering is using these accounts to channel world events.
- But how do different disciplines and accounts cohere?
- To solve big problems, we need to connect different approaches.

A road to true interdisciplinarity

Scientific disciplines are conceptual analogies of the world.

- Science: a schematic, conceptual account of phenomena.
- Engineering is using these accounts to channel world events.
- But how do different disciplines and accounts cohere?
- To solve big problems, we need to connect different approaches.

• We need a shared fabric, a substrate for interdiscipinarity.

- Interdisciplinarity consists of effective analogy-making.
- To go further, we need to formalize the analogies themselves.

A road to true interdisciplinarity

Scientific disciplines are conceptual analogies of the world.

- Science: a schematic, conceptual account of phenomena.
- Engineering is using these accounts to channel world events.
- But how do different disciplines and accounts cohere?
- To solve big problems, we need to connect different approaches.
- We need a shared fabric, a substrate for interdiscipinarity.
 - Interdisciplinarity consists of effective analogy-making.
 - To go further, we need to formalize the analogies themselves.
- Better yet: we need a conceptual stem-cell.
 - Something that can differentiate into huge variety of forms.
 - Find the analogies between forms as aspects within the stem cell.

Category theory as conceptual stem-cell

Category theory (CT) can differentiate into many forms:

All forms of pure math... (we'll briefly discuss this)

Category theory as conceptual stem-cell

Category theory (CT) can differentiate into many forms:

- All forms of pure math... (we'll briefly discuss this)
- Databases and knowledge representation (categories and functors)
- Functional programming languages (cartesian closed categories)
- Universal algebra (finite-product categories)
- Dynamical systems and fractals (operad-algebras, co-algebras)
- Shannon Entropy (operad of simplices)
- Partially-ordered sets and metric spaces (enriched categories)
- Higher order logic (toposes = categories of sheaves)
- Measurements of diversity in populations (magnitude of categories)
- Collaborative design (enriched categories and profunctors)
- Petri nets and chemical reaction networks (monoidal categories)
- Quantum processes and NLP (compact closed categories)

Popper's objection

"A theory that explains everything explains nothing." - Karl Popper

Popper's objection

"A theory that explains everything explains nothing." - Karl Popper

We counter this objection in two ways:

- Couldn't the same objection be made about mathematics?
 - Mathematics is the basis of hard science, used everywhere.
 - CT—like math—explains, models, formalizes many many things.
 - Conclude that math/CT explains everything and hence nothing?

Popper's objection

"A theory that explains everything explains nothing." - Karl Popper

We counter this objection in two ways:

- Couldn't the same objection be made about mathematics?
 - Mathematics is the basis of hard science, used everywhere.
 - CT—like math—explains, models, formalizes many many things.
 - Conclude that math/CT explains everything and hence nothing?
- Stem cells don't do work until they differentiate.
 - "Adult-level" work requires differentiation and optimization.
 - But the unified origins lead to impressive interoperability.

CT is the mathematics of mathematics.

You could also say: CT is mathematics, self-aware.

- Designed to transport theorems from one area of math to another.
 - From topology (shapes) to algebra (equations).
 - This isn't mere analogy, it's analogy made rigorous.

CT is the mathematics of mathematics.

You could also say: CT is mathematics, self-aware.

- Designed to transport theorems from one area of math to another.
 - From topology (shapes) to algebra (equations).
 - This isn't mere analogy, it's analogy made rigorous.
- It's revolutionized pure math since its inception in 1940s.
 - Most modern pure math research is written cat.-theoretically.
 - It's become a gateway to pure mathematics.

CT is the mathematics of mathematics.

You could also say: CT is mathematics, self-aware.

- Designed to transport theorems from one area of math to another.
 - From topology (shapes) to algebra (equations).
 - This isn't mere analogy, it's analogy made rigorous.
- It's revolutionized pure math since its inception in 1940s.
 - Most modern pure math research is written cat.-theoretically.
 - It's become a gateway to pure mathematics.
- And it's branched out from math in a big way.
 - Databases and knowledge representation (categories and functors)
 - Functional programming languages (cartesian closed categories)
 - Dynamical systems and fractals (operad-algebras, co-algebras)
 - Shannon Entropy (operad of simplices)
 - Measurements of diversity in populations (magnitude of categories)
 - Collaborative design (enriched categories and profunctors)
 - Petri nets and chemical reaction networks (monoidal categories)
 - Quantum processes and NLP (compact closed categories)

Compare the information revolution to the industrial revolution:

Compare the information revolution to the industrial revolution:

- Industrial revolution
 - Sewage in streets, runoff in rivers, smog in skies.
 - Uncontrolled flows of stuff.

Compare the information revolution to the industrial revolution:

- Industrial revolution
 - Sewage in streets, runoff in rivers, smog in skies.
 - Uncontrolled flows of stuff.
- Information revolution
 - Big data is messy: it's gleaned, not channeled.
 - Break Humpty Dumpty into a thousand pieces, then reconstruct?
 - Uncontrolled flows of information.

Compare the information revolution to the industrial revolution:

- Industrial revolution
 - Sewage in streets, runoff in rivers, smog in skies.
 - Uncontrolled flows of stuff.
- Information revolution
 - Big data is messy: it's gleaned, not channeled.
 - Break Humpty Dumpty into a thousand pieces, then reconstruct?
 - Uncontrolled flows of information.

If you care about information hygiene, CT needs to be on your radar.

Getting to specifics

The category-theoretic stem cell is about compositional design patterns.

Plan of the talk

Getting to specifics

The category-theoretic stem cell is about compositional design patterns.

Let's focus on one: Data frameworks and data transformations.

- The problem: multiple models of similar information
- What is "model-space"?

Plan of the talk

Getting to specifics

The category-theoretic stem cell is about compositional design patterns.

Let's focus on one: Data frameworks and data transformations.

- The problem: multiple models of similar information
- What is "model-space"?
- Category theory offers a mathematical notion of model-space.
- The kinematics of data: how it moves and rests.

Plan of the talk

- The problem: pervasive and insidious.
- The math: Category theory describes kinematics of data.
- The tool: Open-source implementation and commercialization.

Outline

An invitation to engage with us, and solve real-world problems.

1 Introduction

- 2 The problem
 - The Copernican revolution continues
 - Information kinematics

3 The math

4 The tool

5 Conclusion

The earth was the center; then the sun; then no need for center.

The earth was the center; then the sun; then no need for center.

- Having a world-center provides an origin; good for coordinating.
- But there isn't just one best coordinate system.
- Each coordinate system is a perspective, a basis for calculation.

(Read the above in terms of algebra and in terms of information.)

The earth was the center; then the sun; then no need for center.

- Having a world-center provides an origin; good for coordinating.
- But there isn't just one best coordinate system.
- Each coordinate system is a perspective, a basis for calculation.

(Read the above in terms of algebra and in terms of information.)

- Linear Algebra studies coordinate systems and transformations.
- But people still search for the "best" information model.
 - E.g. OMOP in EMRs
 - BFO, CIDOC, SUMO, etc., etc. in upper ontologies
- Let's change focus to transformations.

The earth was the center; then the sun; then no need for center.

- Having a world-center provides an origin; good for coordinating.
- But there isn't just one best coordinate system.
- Each coordinate system is a perspective, a basis for calculation.

(Read the above in terms of algebra and in terms of information.)

- Linear Algebra studies coordinate systems and transformations.
- But people still search for the "best" information model.
 - E.g. OMOP in EMRs
 - BFO, CIDOC, SUMO, etc., etc. in upper ontologies
- Let's change focus to transformations.

Multiplicity of perspectives is not going away. Let's learn to integrate.

Information integration

Information:

- It's constantly being generated;
- It arises from multiple sources and perspectives;
- Our understanding of it evolves over time.
- It must be integrated to solve larger problems.

Information integration

Information:

- It's constantly being generated;
- It arises from multiple sources and perspectives;
- Our understanding of it evolves over time.
- It must be integrated to solve larger problems.
- Information integration:
 - Putting things together.
 - Making connections, drawing analogies.
 - Finding common structures.

Information integration

Information:

- It's constantly being generated;
- It arises from multiple sources and perspectives;
- Our understanding of it evolves over time.
- It must be integrated to solve larger problems.
- Information integration:
 - Putting things together.
 - Making connections, drawing analogies.
 - Finding common structures.
- Information kinematics:
 - Information rests in databases.
 - Information moves by data transformations.
 - Let's dig in.

- Domain knowledge informs the structure of the database.
 - The structure is called the database *schema*.
 - It consists of a collection of interlocking tables.
- The data itself is structured according to the schema.
 - Unstructured data is not yet informative.
 - It becomes informative through work: structuring it or mining it.

Information rests primarily in databases.

- Domain knowledge informs the structure of the database.
 - The structure is called the database *schema*.
 - It consists of a collection of interlocking tables.
- The data itself is structured according to the schema.
 - Unstructured data is not yet informative.
 - It becomes informative through work: structuring it or mining it.

Information moves through transformations.

- Different situations require different data structures.
- A query transforms data from one structure (schema) to another.
 - The result of a query arrives a schema with only one table.
 - This is a limitation of current notions of querying.

Information rests primarily in databases.

- Domain knowledge informs the structure of the database.
 - The structure is called the database *schema*.
 - It consists of a collection of interlocking tables.
- The data itself is structured according to the schema.
 - Unstructured data is not yet informative.
 - It becomes informative through work: structuring it or mining it.

Information moves through transformations.

- Different situations require different data structures.
- A query transforms data from one structure (schema) to another.
 - The result of a query arrives a schema with only one table.
 - This is a limitation of current notions of querying.
- Other transformations: ETL, schema evolution, warehousing

Think vector spaces and linear transformations.

What is a database?

What is a database?

- A database consists of a bunch of interlocking tables.
- Each table represents some sort of *entity*:
 - Its rows represent examples of that entity.
 - Its columns represents aspects of that entity.

What is a database?

- A database consists of a bunch of interlocking tables.
- Each table represents some sort of *entity*:
 - Its rows represent examples of that entity.
 - Its columns represents aspects of that entity.
- Example: name and owner are aspects of a house-cat.
 - The house-cat is an entity.
 - The house-cat table has a name column.
 - The house-cat table has an owner column.
 - A house-cat owner is a person, an entity of type person.

House-cat	Name	Owner	Person	Name
C101	Prince Charming	P52	 P17	Alice
C241	Patches	P52	P52	Bob
C468	Mittens	P81	P81	Carl

The house-cat schema

Domain knowledge:

- House-cats have names and owners;
- owners are people; and
- people have names.
The house-cat schema

Domain knowledge:

- House-cats have names and owners;
- owners are people; and
- people have names.

The database collects worldly examples of this knowledge:

House-cat	Name	Owner	Person	Name	String
C101	Patches	P52	P17	Alice	Mittens
C241	Mittens	P52	P52	Bob	Patches
C468	Prince Charming	P81	P81	Carl	

The schema for this knowledge can be drawn as a graph:

Each column connects its table to another "foreign" table.

A bit more interesting

Let's add loops and integrity constraints:

Employee	FName	WorksIn	Mngr	String
1	Alan	101	2	Alan
2	Ruth	101	2	IT
3	Kris	102	3	
				11
Departmen	it DNar	ne Secr	Bdgt	×:\$
101	Sale	s 1	\$10	\$5
102	IT	3	\$5	\$6

A bit more interesting

Let's add loops and integrity constraints:

Employee	FName	WorksIn	Mngr	String
1	Alan	101	2	Alan
2	Ruth	101	2	IT
3	Kris	102	3	
Departmen	it DNar	ne Secr	Bdgt	x:\$
101	Sale	s 1	\$10	\$5
102	IT	3	\$5	\$6

Stats:

- 1. Three dots, three tables, three ID columns.
- 2. Six arrows, six non-ID columns.

Data transformation is changing the form of data.

When data is resting in one form, but you want it in another....

Data transformation is changing the form of data.

- When data is resting in one form, but you want it in another....
- Examples: querying!

Data transformation is changing the form of data.

- When data is resting in one form, but you want it in another....
- Examples: querying, ETL, warehousing, converting, evolving, ...

Alice might want to know who her department secretary is.

Data transformation is changing the form of data.

- When data is resting in one form, but you want it in another....
- Examples: querying, ETL, warehousing, converting, evolving, ...

Alice might want to know who her department secretary is.

That's a query.

FOR e:Employee WHERE e.FName = Alice RETURN e.WorksIn, e.WorksIn.Secr.FName

Data transformation is changing the form of data.

- When data is resting in one form, but you want it in another....
- Examples: querying, ETL, warehousing, converting, evolving, ...

Alice might want to know who her department secretary is.

■ That's a query.

FOR e:Employee WHERE e.FName = Alice RETURN e.WorksIn, e.WorksIn.Secr.FName

■ It's a way of transforming data: form A to form B:

Data transformation is poorly understood in IT culture.

Data transformation is poorly understood in IT culture.

- Linear algebra analogy:
 - Imagine using vector spaces but not linear transformations.
 - No idea about matrices, eigenvalues, PCA, etc.
 - There's a lot of room for improvement.

Data transformation is poorly understood in IT culture.

- Linear algebra analogy:
 - Imagine using vector spaces but not linear transformations.
 - No idea about matrices, eigenvalues, PCA, etc.
 - There's a lot of room for improvement.

Information management is perhaps the biggest problem today.

- Calculus and diff. eq.? We can hire people to do that.
- But 40% of IT budgets are spent on information integration.
- We're constantly breaking and reviving Humpty Dumpty.
- IT culture has a poor understanding of data transformations.
- IT culture doesn't even seem to name this problem explicitly.

Data transformation is poorly understood in IT culture.

- Linear algebra analogy:
 - Imagine using vector spaces but not linear transformations.
 - No idea about matrices, eigenvalues, PCA, etc.
 - There's a lot of room for improvement.
- Information management is perhaps the biggest problem today.
 - Calculus and diff. eq.? We can hire people to do that.
 - But 40% of IT budgets are spent on information integration.
 - We're constantly breaking and reviving Humpty Dumpty.
 - IT culture has a poor understanding of data transformations.
 - Not knowing it has this problem makes the problem insidious.

Data transformation is poorly understood in IT culture.

- Linear algebra analogy:
 - Imagine using vector spaces but not linear transformations.
 - No idea about matrices, eigenvalues, PCA, etc.
 - There's a lot of room for improvement.
- Information management is perhaps the biggest problem today.
 - Calculus and diff. eq.? We can hire people to do that.
 - But 40% of IT budgets are spent on information integration.
 - We're constantly breaking and reviving Humpty Dumpty.
 - IT culture has a poor understanding of data transformations.
 - Not knowing it has this problem makes the problem insidious.
- If science needs math, what math underlies data science?
 - A huge opportunity to clean up our information Dumpty problem.
 - To properly handle information, we must understand it formally.
 - Al beyond ML requires information agility.

Information kinematics

What's the problem?

Data transformation is poorly understood in IT culture.

- Linear algebra analogy:
 - Imagine using vector spaces but not linear transformations.
 - No idea about matrices, eigenvalues, PCA, etc.
 - There's a lot of room for improvement.
- Information management is perhaps the biggest problem today.
 - Calculus and diff. eq.? We can hire people to do that.
 - But 40% of IT budgets are spent on information integration.
 - We're constantly breaking and reviving Humpty Dumpty.
 - IT culture has a poor understanding of data transformations.
- If science needs math, what math underlies data science?
 - A huge opportunity to clean up our information Dumpty problem.
 - To properly handle information, we must understand it formally.
 - AI beyond ML requires information agility.

Let's talk math.

Outline

An invitation to engage with us, and solve real-world problems. Introduction

2 The problem

3 The math

- What's a category?
- Data as set-valued functor
- Functorial schema mapping and data migration
- Data transformations
- Databases and RDF

4 The tool

Definition of a category I: Constituents

A category ${\mathcal C}$ consists of the following constituents:

Definition of a category I: Constituents

A category \mathcal{C} consists of the following constituents:

- **1** A class $Ob(\mathcal{C})$, called *the objects of* \mathcal{C} .
 - Objects $x \in Ob(\mathcal{C})$ are written as •^x.

Definition of a category I: Constituents

A category $\mathcal C$ consists of the following constituents:

1 A class Ob(C), called *the objects of* C.

• Objects $x \in Ob(\mathcal{C})$ are written as •^x.

2 A set Arr(C), called *the set of arrows of* C, and two functions

src, *tgt*: Arr(C) \rightarrow Ob(C),

assigning to each arrow its source and its target object, respectively.

An arrow $f \in Arr(\mathcal{C})$ is written $\stackrel{x}{\bullet} \stackrel{f}{\to} \stackrel{y}{\bullet}$, where x = src(f), y = tgt(f).

Definition of a category I: Constituents

A category $\mathcal C$ consists of the following constituents:

1 A class Ob(C), called *the objects of* C.

• Objects $x \in Ob(\mathcal{C})$ are written as •^x.

2 A set Arr(C), called *the set of arrows of* C, and two functions

src, *tgt*: Arr(C) \rightarrow Ob(C),

assigning to each arrow its source and its target object, respectively.

- An arrow $f \in Arr(\mathcal{C})$ is written $\stackrel{x}{\bullet} \stackrel{f}{\to} \stackrel{y}{\bullet}$, where x = src(f), y = tgt(f).
- A path in C is a finite "head-to-tail" sequence $f_1 \circ \cdots \circ f_n$ of arrows

$$\overset{x_0}{\bullet} \xrightarrow{f_1} \overset{x_1}{\bullet} \xrightarrow{f_2} \cdots \xrightarrow{f_n} \overset{x_n}{\bullet}.$$

• Can have n = 1 (one arrow), or n = 0 (just a node).

Definition of a category I: Constituents

A category $\mathcal C$ consists of the following constituents:

1 A class Ob(C), called *the objects of* C.

• Objects $x \in Ob(\mathcal{C})$ are written as •^x.

2 A set Arr(C), called *the set of arrows of* C, and two functions

src, *tgt*: Arr(C) \rightarrow Ob(C),

assigning to each arrow its source and its target object, respectively.

- An arrow $f \in Arr(\mathcal{C})$ is written $\stackrel{x}{\bullet} \stackrel{f}{\to} \stackrel{y}{\bullet}$, where x = src(f), y = tgt(f).
- A path in C is a finite "head-to-tail" sequence $f_1 \circ \cdots \circ f_n$ of arrows

$$\bullet \xrightarrow{f_1} \bullet \xrightarrow{x_1} \xrightarrow{f_2} \cdots \xrightarrow{f_n} \bullet$$

• Can have n = 1 (one arrow), or n = 0 (just a node).

3 An notion of equivalence for paths, denoted \simeq .

Definition of a category II: Rules

These constituents must satisfy the following requirements:

- **1** If $p \simeq q$ are equivalent paths then the sources agree: src(p) = src(q).
- **2** If $p \simeq q$ are equivalent paths then the targets agree: tgt(p) = tgt(q).

Definition of a category II: Rules

These constituents must satisfy the following requirements:

If p ≃ q are equivalent paths then the sources agree: src(p) = src(q).
If p ≃ q are equivalent paths then the targets agree: tgt(p) = tgt(q).
Suppose we have two paths (of any lengths) b → c:

Definition of a category II: Rules

These constituents must satisfy the following requirements:

If p ≃ q are equivalent paths then the sources agree: src(p) = src(q).
If p ≃ q are equivalent paths then the targets agree: tgt(p) = tgt(q).
Suppose we have two paths (of any lengths) b → c:

If $p \simeq q$ then for any extensions

$$\stackrel{a}{\bullet} \xrightarrow{m} \stackrel{b}{\bullet} \xrightarrow{p} \stackrel{c}{\xrightarrow{\sim}} \stackrel{c}{\bullet} \quad \text{or} \quad \stackrel{b}{\bullet} \xrightarrow{p} \stackrel{c}{\xrightarrow{\sim}} \stackrel{n}{\bullet} \stackrel{d}{\xrightarrow{\circ}} \stackrel{d}{\xrightarrow{\circ}}$$

We have equivalences: $m \, \mathring{}\, p \simeq m \, \mathring{}\, q$ and $p \, \mathring{}\, n \simeq q \, \mathring{}\, n$.

Categories = database schemas

- Database schemas are categories!
 - The objects of the category C are tables.
 - The arrows of C are columns, connecting one table to another.
 - The integrity constraints are path equations.
 - We brush some details under the rug (distinction between and ∘).

Categories = database schemas

- Database schemas are categories!
 - The objects of the category *C* are tables.
 - The arrows of C are columns, connecting one table to another.
 - The integrity constraints are path equations.
 - We brush some details under the rug.
- But there are also categories that are well-known in math.

Categories are everywhere in mathematics.

■ The category **Set** of sets:

Categories are everywhere in mathematics.

- The category **Set** of sets:
 - Objects = all sets
 - arrows $S \rightarrow T =$ all functions from S to T
 - paths = composable functions $S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow S_n$
 - \blacksquare paths equivalent \iff same composite function

Categories are everywhere in mathematics.

- The category **Set** of sets:
 - Objects = all sets
 - arrows $S \rightarrow T =$ all functions from S to T
 - paths = composable functions $S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow S_n$
 - \blacksquare paths equivalent \iff same composite function
- The category Vect of vector spaces
 - Objects = vector spaces
 - arrows = linear transformations....

Categories are everywhere in mathematics.

- The category **Set** of sets:
 - Objects = all sets
 - arrows $S \rightarrow T =$ all functions from S to T
 - paths = composable functions $S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow S_n$
 - \blacksquare paths equivalent \iff same composite function
- The category Vect of vector spaces
 - Objects = vector spaces
 - arrows = linear transformations....
- The category of measurable spaces
- The category of metric or topological spaces,
- The category **Cat** of categories.

Categories are everywhere in mathematics.

- The category **Set** of sets:
 - Objects = all sets
 - arrows $S \rightarrow T =$ all functions from S to T
 - paths = composable functions $S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow S_n$
 - \blacksquare paths equivalent \iff same composite function
- The category Vect of vector spaces
 - Objects = vector spaces
 - arrows = linear transformations....
- The category of measurable spaces
- The category of metric or topological spaces,
- The category Cat of categories.

There's also a notion of *mapping* between categories: functors.

Functors: mappings between categories

What's a functor?

Functors: mappings between categories

What's a functor?

- Recall: a category is a directed graph with path equivalences.
- A functor is a graph mapping that respects path equivalence.

Functors: mappings between categories

What's a functor?

- Recall: a category is a directed graph with path equivalences.
- A functor is a graph mapping that respects path equivalence.
- **Definition**: A functor $F : C \to D$ consists of
 - \blacksquare a function $\mathsf{Ob}(\mathcal{C}) \to \mathsf{Ob}(\mathcal{D})$ and
 - a function $\operatorname{Arr}(\mathcal{C}) \to \operatorname{Path}(\mathcal{D})$,

such that F

- respects sources and targets,
- respects equivalences of paths.

Functors and databases

Recall:

- A category C is basically a database schema.
- A functor $\mathcal{C} \to \mathcal{D}$ is a graph mapping that preserves equivalences.

Functors and databases

Recall:

- A category C is basically a database schema.
- A functor $\mathcal{C} \to \mathcal{D}$ is a graph mapping that preserves equivalences.
- Set is a category; recall
 - its objects are all sets
 - its arrows $S \rightarrow T$ are functions, and
 - two paths are equivalent if they compose to the same function.

Functors and databases

Recall:

- A category C is basically a database schema.
- A functor $\mathcal{C} \to \mathcal{D}$ is a graph mapping that preserves equivalences.
- **Set** is a category; recall
 - its objects are all sets
 - its arrows $S \rightarrow T$ are functions, and
 - two paths are equivalent if they compose to the same function.
- A functor $\mathcal{C} \to \textbf{Set}$ fills schema \mathcal{C} with data.
 - Example: Let \mathcal{C} be the category on the left.
 - Then here's an example functor $I: \mathcal{C} \rightarrow \mathbf{Set}$:

$$\mathcal{C} \coloneqq \begin{bmatrix} A \xrightarrow{f} & B \\ s \downarrow \\ C \end{bmatrix}$$

Schema=Category, Instance=Set-valued functor

• Let \mathcal{C} be the following category

• A functor $I: \mathcal{C} \rightarrow \mathbf{Set}$ consists of

- A set for each object of C and
- \blacksquare a function for each arrow of \mathcal{C} , such that
- the declared equations hold.

In other words, *I* fills the schema with compatible data.

	Employee	FName	WorksIn	Mngr	Department	DName	Secr	Bdgt
1:=	1 2 3	Alan Ruth Kris	101 101 102	2 2 3	101 102	Sales IT	1 3	\$10 \$5

Summary of the connection

- The connection between categories and databases is simple.
- A database schema is a custom category.
- Functors $I: \mathcal{C} \rightarrow \mathbf{Set}$ are database instances.
- What about functors $F: \mathcal{C} \to \mathcal{D}$ between schemas?

Data transformations

We want to move data between different frameworks.

- **D**ata is resting in schema C.
- We want to move it in a specific way to schema \mathcal{D} .
- We can specify this transformation using functors.

We can do all sorts of data transformations using functors.

■ Queries, ETL processes, warehousing, schema evolution, etc.

- Queries, ETL processes, warehousing, schema evolution, etc.
- A functor $\mathcal{C} \to \mathcal{D}$
 - sends nodes to nodes,
 - sends arrows to paths, and
 - respects path equivalence.

- Queries, ETL processes, warehousing, schema evolution, etc.
- A functor $\mathcal{C} \to \mathcal{D}$
 - sends nodes to nodes,
 - sends arrows to paths, and
 - respects path equivalence.
- But functors play two roles here:
 - They connect schemas to schemas, $F: \mathcal{C} \to \mathcal{D}$
 - They connect schemas to data, $I: \mathcal{D} \rightarrow \mathbf{Set}$.
 - Upshot: one can compose and get a functor $(F \circ I): C \to \mathbf{Set}$.

- Queries, ETL processes, warehousing, schema evolution, etc.
- A functor $\mathcal{C} \to \mathcal{D}$
 - sends nodes to nodes,
 - sends arrows to paths, and
 - respects path equivalence.
- But functors play two roles here:
 - They connect schemas to schemas, $F: \mathcal{C} \to \mathcal{D}$
 - They connect schemas to data, $I: \mathcal{D} \rightarrow \mathbf{Set}$.
 - Upshot: one can compose and get a functor $(F \stackrel{\circ}{,} I): C \rightarrow \mathbf{Set}$.
- Functor composition becomes data transformation:
 - $\Delta_{\textit{F}} \colon \mathcal{D}\text{-}\textit{Inst} \to \mathcal{C}\text{-}\textit{Inst}.$
 - Applying Δ_F to *I* is called "pulling *I* back along *F*".

- Queries, ETL processes, warehousing, schema evolution, etc.
- A functor $\mathcal{C} \to \mathcal{D}$
 - sends nodes to nodes,
 - sends arrows to paths, and
 - respects path equivalence.
- But functors play two roles here:
 - They connect schemas to schemas, $F: \mathcal{C} \to \mathcal{D}$
 - They connect schemas to data, $I: \mathcal{D} \rightarrow \mathbf{Set}$.
 - Upshot: one can compose and get a functor $(F \stackrel{\circ}{,} I): C \rightarrow \mathbf{Set}$.
- Functor composition becomes data transformation:
 - $\Delta_{\textit{F}} \colon \mathcal{D}\text{-}\textit{Inst} \to \mathcal{C}\text{-}\textit{Inst}.$
 - Applying Δ_F to *I* is called "pulling *I* back along *F*".
 - Δ_F has two forward-directional *adjoints*, Σ_F and Π_F .
 - Let's back up a little.

The category of instances

Given a schema C, the *category of instances* on C is denoted C-**Inst**.

- The objects of C-Inst are functors (instances) $I: C \rightarrow Set$.
- The arrows are insertions and deduplications of data.

The category of instances

Given a schema C, the *category of instances* on C is denoted C-**Inst**.

- The objects of C-Inst are functors (instances) $I: C \rightarrow Set$.
- The arrows are insertions and deduplications of data.
- Functors between schemas allow us to move data between them.
 - Given a functor $F: \mathcal{C} \to \mathcal{D}$,
 - There are automatically three data transformation functors

$$\mathcal{C}\text{-Inst} \xrightarrow[]{\Gamma_F}{\underbrace{\leftarrow \Delta_F \longrightarrow}} \mathcal{D}\text{-Inst}$$

- **Roughly:** Δ =project, delete; Σ =sum, union; Π =product, join.
- Δ, Σ, Π were known by mathematicians in 1960. "Kan extensions".
- But they had no idea Δ, Σ, Π correspond to DB rel'l algebra (1970).

The category of instances

■ Given a schema *C*, the *category of instances* on *C* is denoted *C*-**Inst**.

- The objects of C-Inst are functors (instances) $I: C \rightarrow Set$.
- The arrows are insertions and deduplications of data.
- Functors between schemas allow us to move data between them.
 - Given a functor $F: \mathcal{C} \to \mathcal{D}$,
 - There are automatically three data transformation functors

$$\mathcal{C}\text{-Inst} \xrightarrow[]{\Gamma_F}{\underbrace{\leftarrow \Delta_F \longrightarrow}} \mathcal{D}\text{-Inst}$$

- **Roughly**: Δ =project, delete; Σ =sum, union; Π =product, join.
- Δ, Σ, Π were known by mathematicians in 1960. "Kan extensions".
- But they had no idea Δ, Σ, Π correspond to DB rel'l algebra (1970).

There's a lot of mathematics ready made for hygienically moving data.

Example: The Grothendieck construction

- Let C be a category and let $I: C \rightarrow \mathbf{Set}$ be a functor.
- We can convert *I* into a category Gr(I) in a canonical way:
 - Example:

■ Gr(1) is also known as the category of elements of I:

This applies to database instances

Suppose given the following instance, considered as $\mathit{I}\colon \mathcal{C} \to \textbf{Set}$

Employee							
ld	FName	Mgr	WorksIn				
1	Alan	3	101				
2	Ruth	2	102				
3	Kris	3	101				
	Department						
ld	Name	Secr]				
101	Sales	1	1				
102	IT	2	1				

Here is Gr(I), the category of elements of *I*:

Relations to RDF

The category of elements comes with a functor π : $Gr(I) \longrightarrow C$.

Relations to RDF

The category of elements comes with a functor π : $Gr(I) \longrightarrow C$.

Relation to RDF triple stores and schemas:

- Each arrow $x \xrightarrow{f} y$ in Gr(I) is an *RDF triple* (x, f, y).
 - subject=*x*, predicate=*f*, object =*y*.
 - Example: (1, FName, Alan) or (101, Secr, 1)

Relations to RDF

The category of elements comes with a functor π : $Gr(I) \longrightarrow C$.

Relation to RDF triple stores and schemas:

- Each arrow $x \xrightarrow{f} y$ in Gr(I) is an *RDF triple* (x, f, y).
 - subject=x, predicate=f, object =y.
 - Example: (1, FName, Alan) or (101, Secr, 1)
- Category theoretic model of RDF
 - Think of Gr(I) as RDF triple store, C as RDF schema.
 - SPARQL graph pattern queries fit easily into the model.
 - Models embedded dependencies (analogous to OWL schemas).

Outline

An invitation to engage with us, and solve real-world problems.

- 1 Introduction
- 2 The problem
- 3 The math
- 4 The toolThe history of AQL
 - AQL Capabilities

5 Conclusion

- The mathematical foundations of this story are old.
 - The basic idea was known to mathematicians 60 years ago.
 - More recently we've learned a lot about how to calculate them fast.
 - Getting data types (o^{string}) into the picture is a little more delicate.

- The mathematical foundations of this story are old.
 - The basic idea was known to mathematicians 60 years ago.
 - More recently we've learned a lot about how to calculate them fast.
 - Getting data types (\circ^{string}) into the picture is a little more delicate.
- I realized the connection to data transformations in around 2008.
 - I hired Ryan Wisnesky, a Harvard CS grad student, to code it.
 - Ryan joined me as a postdoc at MIT.
 - The math was finally completed in 2015.
 - I learned a lot about the difference between math and code.

- The mathematical foundations of this story are old.
 - The basic idea was known to mathematicians 60 years ago.
 - More recently we've learned a lot about how to calculate them fast.
 - Getting data types (\circ^{string}) into the picture is a little more delicate.
- I realized the connection to data transformations in around 2008.
 - I hired Ryan Wisnesky, a Harvard CS grad student, to code it.
 - Ryan joined me as a postdoc at MIT.
 - The math was finally completed in 2015.
 - I learned a lot about the difference between math and code.

"Beware of bugs in the above code; I have only proved it correct, not tried it." – Donald Knuth

- The mathematical foundations of this story are old.
 - The basic idea was known to mathematicians 60 years ago.
 - More recently we've learned a lot about how to calculate them fast.
 - Getting data types (\circ^{string}) into the picture is a little more delicate.
- I realized the connection to data transformations in around 2008.
 - I hired Ryan Wisnesky, a Harvard CS grad student, to code it.
 - Ryan joined me as a postdoc at MIT.
 - The math was finally completed in 2015.
 - I learned a lot about the difference between math and code.

"Beware of bugs in the above code; I have only proved it correct, not tried it." – Donald Knuth

- We received funding from various government agencies.
 - ONR, AFOSR, NIST, NSF.
- A company spun out of MIT in 2015.
 - Categorical Informatics Inc.
 - All MIT IP is open source, all Catinf IP is not.

■ Import / export CSV, SQL, JSON, RDF, XML, etc.

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.
- **ETL** functionality: transform data (Σ, Δ, Π) at scale.

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.
- **ETL** functionality: transform data (Σ, Δ, Π) at scale.
- Incorporates any function from across JVM languages (JavaScript, Java, Python, etc).
 - Arbitrary user-defined functions, e.g. edit-distance between strings.
 - Can specify and reason about them, e.g. for database transformations.

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.
- **ETL** functionality: transform data (Σ, Δ, Π) at scale.
- Incorporates any function from across JVM languages (JavaScript, Java, Python, etc).
 - Arbitrary user-defined functions, e.g. edit-distance between strings.
 - Can specify and reason about them, e.g. for database transformations.
- Data integration and warehousing: compute limits and colimits.

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.
- **ETL** functionality: transform data (Σ, Δ, Π) at scale.
- Incorporates any function from across JVM languages (JavaScript, Java, Python, etc).
 - Arbitrary user-defined functions, e.g. edit-distance between strings.
 - Can specify and reason about them, e.g. for database transformations.
- Data integration and warehousing: compute limits and colimits.
- Check, clean, or repair against rich data integrity constraints
 - Repair using Chase algorithm on existential Horn clauses (EDs)

- Import / export CSV, SQL, JSON, RDF, XML, etc.
- Check schema mappings and queries for functoriality, at compile time.
 - Achieved using various automated theorem provers.
 - Know in advance that landed data will satisfy all target constraints.
- **ETL** functionality: transform data (Σ, Δ, Π) at scale.
- Incorporates any function from across JVM languages (JavaScript, Java, Python, etc).
 - Arbitrary user-defined functions, e.g. edit-distance between strings.
 - Can specify and reason about them, e.g. for database transformations.
- Data integration and warehousing: compute limits and colimits.
- Check, clean, or repair against rich data integrity constraints
 - Repair using Chase algorithm on existential Horn clauses (EDs)
- And more (natural transformations, algebraic theories, profunctors, Grothendieck construction, (co-) monads..., simply-typed lambda calculus)

Screenshot

Outline

An invitation to engage with us, and solve real-world problems.

- 1 Introduction
- 2 The problem
- **3** The math
- 4 The tool

5 Conclusion

- The bigger picture, again
- Summary of the talk

The bigger picture, again

The point of all that was to give a glimpse into category theory.

A simple principle—data transformations—formalized mathematically.

The bigger picture, again

The point of all that was to give a glimpse into category theory.

- A simple principle—data transformations—formalized mathematically.
- And this database stuff is just one part of category theory.
 - CT has formalized the principles of mathematics, in mathematics.
 - Space, measure, operation, data, symmetry, equivalence, syntax.
 - There is a web of interconnection between all these principles.

The bigger picture, again

The point of all that was to give a glimpse into category theory.

- A simple principle—data transformations—formalized mathematically.
- And this database stuff is just one part of category theory.
 - CT has formalized the principles of mathematics, in mathematics.
 - Space, measure, operation, data, symmetry, equivalence, syntax.
 - There is a web of interconnection between all these principles.
- CT been recently highlighted by agencies such as NIST and DARPA.
 - CT stem cell leads to interoperability and compositionality.
 - It compresses and connects big ideas.
 - It helps you take care of all the corner cases.
 - Through strong abstraction principles, it exposes conceptual neighbors.

Summary of the talk

■ Today: the connection between databases and categories.

Summary of the talk

Today: the connection between databases and categories.

Employee	FName	WorksIn	Mngr	D	epartment	DName	Secr	String
1	Alan	101	2		101	Sales	1	Alan
2	Ruth	101	2		102	IT IT	3	IT
3	Kris	102	3					

Summary of the talk

Today: the connection between databases and categories.

Employee	FName	WorksIn	Mngr	Department	DName	Secr	String
1	Alan	101	2	101	Sales	1	Alan
2	Ruth	101	2	102	IT	3	IT
3	Kris	102	3				

Information kinematics—how data moves—is well-modeled by CT.
Summary of the talk

Today: the connection between databases and categories.

Employee	FName	WorksIn	Mngr	Department	DName	Secr	String
1	Alan	101	2	 101	Sales	1	Alan
2	Ruth	101	2	102	IT	3	IT
3	Kris	102	3				

- Information kinematics—how data moves—is well-modeled by CT.
- With a good understanding, we save a lot of time and effort.

For more...

Book: An Invitation to Applied Category Theory: Seven Sketches in Compositionality. Cambridge University Press, July 2019. https://arxiv.org/abs/1803.05316

Company: Categorical Informatics. Website: http://catinf.com

Community: Category Theory Seminar, Thursdays 4:30 - 5:30, MIT Building 2, room 255. http://brendanfong.com/seminar.html

Thanks for the invitation to speak!