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Introduction

§ There is a branch of math called category theory that allows you to
convert relational data to graph data and vice-versa in a way that is
guaranteed to respect data integrity/business rules.

§ This branch of mathematics also describes an optimal way to merge
knowledge graphs, which we at Conexus have so far been using to
merge ontologies (and merge relational databases, and merge
ontologies with relational databases, and more).

§ Work has culminated in an open-source language, CQL, available at
categoricaldata.net, being commercialized by Conexus, conexus.com.

§ Categories are graphs with extra structure, and so category theory has
deep connections to “algebraic property graphs” (joint work with
Joshua Shinavier).
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Example Categorical Schema and Database
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Categorical Databases to Triples (Graphs) and Back
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Categorical Select-From-Where/For-Where-Return Syntax
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Find the name of every manager’s department:

CQL SQL

select e.manager.works.name select d.name

from Emp as e from Emp as e1, Emp as e2, Dept as d

where e1.manager = e2.ID and

e2.works = d.ID
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How to optimally merge knowledge graph schemas

1. Describe each input knowledge graph schema as a directed labelled
multi-graph with equational constraints (i.e., a category).

2. Union together the knowledge graph schemas, define a set of
equational constraints that describe their semantic overlap, and merge
their nodes, and if possible, edges, according to these constraints. (i.e.
compute a “co-limit” in the category of schemas).

§ The result of the schema merge is unique up to unique isomorphism,
but in practice, people invariably want to choose a particular way of
merging (e.g., prefer Person to People).

§ The merged schema posses a unique mapping to any other way of
merging the schemas.
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How to optimally merge knowledge graphs

1. Transform each input knowledge graph into tables over its schema.

2. “OUTER UNION” the input tables onto the merged schemas, then
recursively “OUTER MERGE” their rows them according to the
equations in the merged schema. (i.e. compute a “co-limit” in the
category set-valued functors out of the merged schema).

§ “OUTER UNION” and “OUTER MERGE” must create labelled nulls,
not SQL-style nulls, so this process can diverge, and it is undecidable
predicting if it does.

§ The result of the data merge is unique up to unique isomorphism, and
posses a unique mapping to any other way of merging the data.

3. (Optional). Arbitrary “row linking” algorithms may be added to the
above data merge step by materializing their output row links as data
on merged knowledge graph schema and adding corresponding
equations to the merged schema.

§ For example, chemical links can be imported as tuples of the form
(Hydrogen, H), (Helium, He), etc.
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Schema Integration in CQL
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Data Integration (Tabular) - Overlap Given as Data
Observation
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Data Integration in CQL
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Conclusion

§ There is a branch of math called category theory that allows you to
convert relational data to graph data and vice-versa in a way that is
guaranteed to respect data integrity/business rules.

§ This branch of mathematics also describes an optimal way to merge
knowledge graphs, which we at Conexus have so far been using to
merge ontologies (and merge relational databases, and merge
ontologies with relational databases, and more). See
categoricaldata.net and conexus.com.

§ We’re looking for partners to merge knowledge graphs in practice!
CQL works with Tinkerpop graphs and RDF/OWL out of the box.
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Tinkerpop Import
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Rdf Import
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Backup Slides
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Category Theory
A category C consists of

§ objects A, B, C . . . and arrows (also called morphisms) f , g, h . . . such that:

§ For every arrow f there is an object srcpfq called the source of f and an object
tgtpfq called the target of f . When S “ srcpfq and T “ tgtpfq, we may write
f : S Ñ T . Visually:

S
f // T

§ For every arrow f : AÑ B and arrow g : B Ñ C there is an arrow g ˝ f : AÑ C
called the composite of f and g:

A
f //

g˝f

44B
g // C

§ Composition is associative, i.e. h ˝ pg ˝ fq “ ph ˝ gq ˝ f for arbitrary f , g, and h.

§ For every object A there is an identity arrow idA : AÑ A:

A
idA ��

§ Furthermore, for any arrow f : AÑ B, f ˝ idA “ f “ idB ˝ f .

A functor F : C Ñ D is a function from C’s objects to D’s objects and C’s arrows to D’s
arrows that preserves composition and identity:

F pidcq “ idF pcq F pf ˝ gq “ F pfq ˝ F pgq. 15 / 18



Categorical Schemas and Databases

§ A schema S is a directed multi-graph and a set of paths through the
graph called “equivalent”.

§ A schema S denotes a category JSK:
§ The objects of JSK are the nodes of S.
§ The arrows of JSK are the paths through S, modulo the path

equivalences in S.

§ An S-instance (database on schema S) is a collection of sets, one per
node in S, and a collection of (unary) functions, one per edge in S,
satisfying the path equivalences in S.

§ For example, these sets and functions may be represented as a
collection of SQL tables, one per node in S, each with columns for
edges out of that node.

§ An S-instance denotes a functor JSK Ñ Set, where Set, the category
of sets, has for objects all sets and for arrows all (unary) functions.
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Query Evaluation and Co-evaluation
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a Alice $100 20
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Example Round Trip

N1

ID Name Salary

1 Alice $100
2 Bob $250
3 Sue $300

N2

ID Age

4 20

5 20

6 30

coevalQ
ÝÝÝÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30
§

§

đ
η

evalQ

Ö

N1

ID Name Salary

a Alice $100
b Bob $250
c Sue $300
d null4 null5
e null6 null7
f null8 null9

N2

ID Age

a null1
b null2
c null3
d 20

e 20

f 30
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