
Optimal Knowledge Graph Merge
using Category Theory

Ryan Wisnesky
Conexus AI

April 6, 2021

Σ % ∆ % Π

Introduction

§ There is a branch of math called category theory that allows you to
convert relational data to graph data and vice-versa in a way that is
guaranteed to respect data integrity/business rules.

§ This branch of mathematics also describes an optimal way to merge
knowledge graphs, which we at Conexus have so far been using to
merge ontologies (and merge relational databases, and merge
ontologies with relational databases, and more).

§ Work has culminated in an open-source language, CQL, available at
categoricaldata.net, being commercialized by Conexus, conexus.com.

§ Categories are graphs with extra structure, and so category theory has
deep connections to “algebraic property graphs” (joint work with
Joshua Shinavier).

2 / 18

Example Categorical Schema and Database

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zz
String
‚

Emp
‚

manager
ÝÝÝÝÝÝÝÑ

Emp
‚

works
ÝÝÝÝÝÑ

Dept
‚ “

Emp
‚

works
ÝÝÝÝÝÑ

Dept
‚

Dept
‚

secretary
ÝÝÝÝÝÝÝÑ

Emp
‚

works
ÝÝÝÝÝÑ

Dept
‚ “

Dept
‚

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 101 CS

x02 102 Math

String

ID

Al

Bob

. . .

3 / 18

Categorical Databases to Triples (Graphs) and Back

CS
‚

q10
‚

sec

##
name
oo 101

‚
works

oo first //

mgr

��

last

%%
Al
‚

Akin
‚

Math
‚

x02
‚

sec

##
name
oo 102

‚
works

oo first //

last

$$

mgr

QQ
Bob
‚

Bo
‚

103
‚

works

RR

mgr

QQ
first //

last

%%
Carl
‚

Cork
‚

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 101 CS

x02 102 Math

String

ID

Al

Bob

. . .

4 / 18

Categorical Select-From-Where/For-Where-Return Syntax

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zz
String
‚

Find the name of every manager’s department:

CQL SQL

select e.manager.works.name select d.name

from Emp as e from Emp as e1, Emp as e2, Dept as d

where e1.manager = e2.ID and

e2.works = d.ID

5 / 18

How to optimally merge knowledge graph schemas

1. Describe each input knowledge graph schema as a directed labelled
multi-graph with equational constraints (i.e., a category).

2. Union together the knowledge graph schemas, define a set of
equational constraints that describe their semantic overlap, and merge
their nodes, and if possible, edges, according to these constraints. (i.e.
compute a “co-limit” in the category of schemas).

§ The result of the schema merge is unique up to unique isomorphism,
but in practice, people invariably want to choose a particular way of
merging (e.g., prefer Person to People).

§ The merged schema posses a unique mapping to any other way of
merging the schemas.

6 / 18

How to optimally merge knowledge graphs

1. Transform each input knowledge graph into tables over its schema.

2. “OUTER UNION” the input tables onto the merged schemas, then
recursively “OUTER MERGE” their rows them according to the
equations in the merged schema. (i.e. compute a “co-limit” in the
category set-valued functors out of the merged schema).

§ “OUTER UNION” and “OUTER MERGE” must create labelled nulls,
not SQL-style nulls, so this process can diverge, and it is undecidable
predicting if it does.

§ The result of the data merge is unique up to unique isomorphism, and
posses a unique mapping to any other way of merging the data.

3. (Optional). Arbitrary “row linking” algorithms may be added to the
above data merge step by materializing their output row links as data
on merged knowledge graph schema and adding corresponding
equations to the merged schema.

§ For example, chemical links can be imported as tuples of the form
(Hydrogen, H), (Helium, He), etc.

7 / 18

Schema Integration in CQL

8 / 18

Data Integration (Tabular) - Overlap Given as Data
Observation

ID f g
Person

ID
p

Type
ID
BP
Wt

Ñ Method
ID g2
m1 BP
m2 BP
m3 Wt
m4 Wt

Type
ID
BP
Wt

Observation
ID f g1
o1 Pete m1
o2 Pete m2
o3 Jane m3
o4 Jane m1

Patient
ID

Jane
Pete

Ó Ó

Gender
ID
F
M

Type
ID
BP
Wt
HR

Observation
ID f g
o5 Peter BP
o6 Paul HR
o7 Peter Wt

Person
ID h

Paul M
Peter M

Ñ Method
ID g2

null1 BP
null2 Wt
null3 HR
m1 BP
m2 BP
m3 Wt
m4 Wt

Observation
ID f g1
o1 Peter m1
o2 Peter m2
o3 Jane m3
o4 Jane m1
o5 Peter null1
o6 Paul null2
o7 Peter null3

Gender
ID
F
M

null4

ObsType
ID
BP
Wt
HR

Person
ID h

Jane null4
Paul M
Peter M

9 / 18

Data Integration in CQL

10 / 18

Conclusion

§ There is a branch of math called category theory that allows you to
convert relational data to graph data and vice-versa in a way that is
guaranteed to respect data integrity/business rules.

§ This branch of mathematics also describes an optimal way to merge
knowledge graphs, which we at Conexus have so far been using to
merge ontologies (and merge relational databases, and merge
ontologies with relational databases, and more). See
categoricaldata.net and conexus.com.

§ We’re looking for partners to merge knowledge graphs in practice!
CQL works with Tinkerpop graphs and RDF/OWL out of the box.

11 / 18

Tinkerpop Import

12 / 18

Rdf Import

13 / 18

Backup Slides

14 / 18

Category Theory
A category C consists of

§ objects A, B, C . . . and arrows (also called morphisms) f , g, h . . . such that:

§ For every arrow f there is an object srcpfq called the source of f and an object
tgtpfq called the target of f . When S “ srcpfq and T “ tgtpfq, we may write
f : S Ñ T . Visually:

S
f // T

§ For every arrow f : AÑ B and arrow g : B Ñ C there is an arrow g ˝ f : AÑ C
called the composite of f and g:

A
f //

g˝f

44B
g // C

§ Composition is associative, i.e. h ˝ pg ˝ fq “ ph ˝ gq ˝ f for arbitrary f , g, and h.

§ For every object A there is an identity arrow idA : AÑ A:

A
idA ��

§ Furthermore, for any arrow f : AÑ B, f ˝ idA “ f “ idB ˝ f .

A functor F : C Ñ D is a function from C’s objects to D’s objects and C’s arrows to D’s
arrows that preserves composition and identity:

F pidcq “ idF pcq F pf ˝ gq “ F pfq ˝ F pgq. 15 / 18

Categorical Schemas and Databases

§ A schema S is a directed multi-graph and a set of paths through the
graph called “equivalent”.

§ A schema S denotes a category JSK:
§ The objects of JSK are the nodes of S.
§ The arrows of JSK are the paths through S, modulo the path

equivalences in S.

§ An S-instance (database on schema S) is a collection of sets, one per
node in S, and a collection of (unary) functions, one per edge in S,
satisfying the path equivalences in S.

§ For example, these sets and functions may be represented as a
collection of SQL tables, one per node in S, each with columns for
edges out of that node.

§ An S-instance denotes a functor JSK Ñ Set, where Set, the category
of sets, has for objects all sets and for arrows all (unary) functions.

16 / 18

Query Evaluation and Co-evaluation

String
‚

N1
‚

name
??

salary
f

// N2
‚

age~~
‚
Int

Q
ÐÝ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID name salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID age

4 20

5 20

6 30

evalQ
ÐÝÝÝÝ
coevalQ
ÝÝÝÝÝÑ

N

ID name salary age

a Alice $100 20

b Bob $250 20

c Sue $300 30

17 / 18

Example Round Trip

N1

ID Name Salary

1 Alice $100
2 Bob $250
3 Sue $300

N2

ID Age

4 20

5 20

6 30

coevalQ
ÝÝÝÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30
§

§

đ
η

evalQ

Ö

N1

ID Name Salary

a Alice $100
b Bob $250
c Sue $300
d null4 null5
e null6 null7
f null8 null9

N2

ID Age

a null1
b null2
c null3
d 20

e 20

f 30

18 / 18

